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Preface

This is the second volume of the two-volume series which contains the
proof of the classification of the flag-transitive P - and T -geometries. A
P -geometry (Petersen geometry) has diagram

2
◦

2
◦ · · ·

2
◦

2
◦ P

1
◦,

where
2
◦ P

1
◦ denotes the geometry of 15 edges and 10 vertices of the

Petersen graph. A T -geometry (Tilde geometry) has diagram

2
◦

2
◦ · · ·

2
◦

2
◦ ∼

2
◦,

where
2
◦ ∼

2
◦ denotes the 3-fold cover of the generalized quadrangle of

order (2, 2), associated with the non-split extension 3 · S4(2) ∼= 3 · Sym6.

The final result of the classification as announced in [ISh94b], is the
following (we write G(G) for the P - or T -geometry admitting G as a flag-
transitive automorphism group).

Theorem 1 Let G be a flag-transitive P - or T -geometry and G be a flag-
transitive automorphism group of G. Then G is isomorphic to a geometry
H in Table I or Table II and G is isomorphic to a group H in the row
corresponding to H.

In the first volume [Iv99] and in [IMe99] for the case G(J4) the following
has been established.

Theorem 2 Let H be a geometry from Table I or II of rank at least 3 and
H be a group in the row corresponding to H. Then

(i) H exists and of correct type (i.e., P - or T -geometry);

(ii) H is a flag-transitive automorphism group of H;

(iii) either H is simply connected or H ∼= G(M22) and the universal cover
of H is G(3 ·M22).

v
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Table I. Flag-transitive P -geometries

Rank Geometry H Flag-transitive automorphism
groups H

2 G(Alt5) Alt5, Sym5

3 G(M22) M22, AutM22

G(3 ·M22) 3 ·M22, 3 ·AutM22

4 G(M23) M23

G(Co2) Co2

G(323 · Co2) 323 · Co2

G(J4) J4

5 G(BM) BM

G(34371 ·BM) 34371 ·BM

If F is a geometry and F is a flag-transitive automorphism group of F
then A(F,F) denotes the amalgam of maximal parabolics associated with
the action of F on F . In these terms the main result of the present volume
can be stated follows:

Theorem 3 Let G be a flag-transitive P - or T -geometry of rank at least 3
and G be a flag-transitive automorphism group of G. Then for a geometry H
and its automorphism group from Table I or Table II we have the following:

A(G,G) ∼= A(H,H).

In the above theorem we can assume that H is simply connected. Then
by Theorem 1.4.5 H is the universal cover of G and H is the universal
completion of A(G,G).

Notice that Theorem 3 immediately implies that a geometry H from
Table I or Table II does not have flag-transitive automorphism groups ex-
cept those already in the tables. Particularly, the largest of the groups
corresponding to H is the full automorphism group.
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Table II. Flag-transitive T -geometries

Rank Geometry H Flag-transitive automorphism
groups H

2 G(3 · S4(2)) 3 ·Alt6, 3 · S4(2) ∼= 3 · Sym6

3 G(M24) M24

G(He) He

4 G(Co1) Co1

5 G(M) M

n G(3[n2 ]2 · S2n(2)) 3[n2 ]2 · S2n(2)

Now in order to deduce Theorem 1 from Theorems 2 and 3 it is sufficient
to observe the following

Proposition 4 The set of geometries in Tables I and II is closed under
taking coverings commuting with the actions of the flag-transitive automor-
phism groups given in these tables.

Proof. Let H be a geometry from Table I or II and H be a flag-
transitive automorphism group of H (also from the table). Suppose that
σ : H → H is a proper covering which commutes with the action of H on
H and let H be the action induced by H on H. Let N be the kernel of the
homomorphism of H onto H (the subgroup of deck transformations with
respect to σ). In order to identify N we look at the normal structure of
H. If Q = O3(H) then either Q is trivial or it is an elementary abelian
3-group which is irreducible as a GF (3)-module for H/Q. Furthermore,
H/Q is either a non-abelian simple group or such a group extended by an
outer automorphism of order 2, finally H does not split over Q. Hence
either |H| ≤ 2, or N = Q, or N = 1. If |H| ≤ 2 then clearly H cannot act
flag-transitively on a P - or T -geometry. If N = Q 6= 1, then the elements
of H are the orbits of Q on H with the natural incidence relation. We know
from [Iv99] that under these circumstances H is a cover of H only if the
former is G(3 ·M22) and the latter is G(M22) (in the other cases σ is only a
1- or 2-covering). Thus N = 1 and H acts flag-transitively on both H and
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H. In this case the 2-part of the stabilizer in H of a point of H must be
strictly larger than that of the stabilizer of a point of H. This is impossible
since for all the pairs (H, H) from the tables the stabilizer in H of a point
from H contains a Sylow 2-subgroup of H. 2

Below we outline our main strategy of proving Theorem 3. Let G be
a P - or T -geometry of rank n ≥ 3, G be a flag-transitive automorphism
group of G and

A = A(G,G) = {Gi | 1 ≤ i ≤ n}

be the amalgam of maximal parabolics associated with the action of G
on G (here Gi = G(xi) is the stabilizer in G of an element xi of type i
in a maximal flag Φ = {x1, ..., xn} in G). Our goal is to identify A up
to isomorphism or, more specifically, to show that A is isomorphic to the
amalgam A(H,H) for a geometry H and a group H from Table I or II. In
fact, it is sufficient to show that given the type of G and its rank there are
at most as many possibilities for the isomorphism type of A as there are
corresponding pairs in Tables I and II.

We proceed by induction on the rank n and assume that all the flag-
transitive P - and T -geometries of rank up to n − 1 (along with their flag-
transitive automorphism groups) are known (as in the tables). Then we
can assume that for every 1 ≤ i ≤ n the residue resG(xi) and the action Gi
of Gi on this residue are known. The kernel Ki of this action is a subgroup
in the Borel subgroup B = ∩ni=1Gi and hence it is a 2-group.

It turns out that the induction hypothesis can be used further since
certain normal factors of Ki resemble the structure of the residue resG(xi).
The most important case is that the action of K1 on the set of points
collinear to x1 is a quotient of the universal representation module of the
residue resG(x1), which is a P - or T -geometry.

Thus, in order to accomplish the identification of the amalgams of max-
imal parabolics it would be helpful (and essential within our approach) to
determine the universal representations of the known P - and T -geometries.
Recall that if H is a geometry (or rather a point-line incidence system) with
three points per a line, then the universal representation module V (H) is a
group generated by pairwise commuting involutions indexed by the points
of H and subject to the relations that the product of the three involutions
corresponding to a line is the identity. It is immediate from the definition
that V (H) is an elementary abelian 2-group (possibly trivial).

For the geometries G(J4), G(BM), G(M) of large sporadic simple groups
the universal representation modules are trivial and this is the reason why
these geometries do not appear as residues in flag-transitive P -and T -
geometries of higher ranks. On the other hand, if G is one of the above
three geometries and G is the automorphism group of G, then the points
and lines of G are certain elementary abelian subgroups in G of order 2 and
22, respectively, so that the incidence relation is via inclusion. This means
that G is a quotient of the universal representation group R(G) of G. The
definition of R(G) is that of V (G) with the wording “pairwise commuting”
removed. Since V (G) is the quotient of R(G) over the commutator subgroup
of R(G), sometimes it turns out easier to show that R(G) is perfect rather
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than showing the triviality of V (G) directly. In Part I we calculate the
modules V (G) for all flag-transitive P - and T -geometries and the groups
R(G) for most of them. These results are summarized in Tables III and IV.
The determination problem for R(G) for various geometries G (including
the P - and T -geometries) is of a an independent interest, since particularly
representations control the c-extensions of geometries.

Table III. Natural representations of P -geometries

Rank Geometry H dim V (H) R(H)

2 G(Alt5) 6 infinite

3 G(M22) 11 C11

G(3 ·M22) 23 ?

4 G(M23) 0 1

G(Co2) 23 Λ
(23)

G(323 · Co2) 23 ?

G(J4) 0 J4

5 G(BM) 0 2 ·BM

G(34371 ·BM) 0 ?

The knowledge of the module V (H) for known geometries H forms a
strong background for the classification of the amalgams A(G,G) for the
flag-transitive automorphism groups G of a P - or T -geometry G. This
classification is presented in Part II of the present volume. As an immediate
outcome we have the following.

Proposition 5 Let G be a P - or T -geometry and G be a flag-transitive
automorphism group of G. Let p be a point (an element of type 1) in G,
F = resG(p), F = G(p) be the stabilizer of p in G and F be the action
induced by F on F . Then (F , F ) is not one of the following pairs:

(G(M23),M23), (G(BM), BM), (G(34371 ·BM), 34371 ·BM), (G(M),M).
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Proof. We apply (1.5.2). Suppose that (F , F ) is one of the above four
pairs. The condition (i) in (1.5.2) follows from Table III and IV. If (p, l, π)
is a flag of rank 3 in G consisting of a point p, line l and plane π, then
the structure of the maximal parabolics associated with the action of F on
F (cf. pp. 114, 224, 210 and 234 in [Iv99]) shows that in each case F (π)
induces Sym3 on the set of lines incident to p and π (so that (ii) in (1.5.2)
holds) and that F (l) is isomorphic respectively to

M22, 21+22
+ .Co2, (21+22

+ × 323).Co2, 21+24
+ .Co1.

Since none of these groups contain a subgroup of index 2 the result follows.
2

Notice that in the case (F , F ) = (G(J4), J4) the subgroup F (l) ∼= 21+12
+ ·

3 · AutM22 does contain a subgroup of index two, so this case requires a
further analysis to be eliminated (this will be accomplished in Section 11.6).

Table IV. Natural representations of T -geometries

Rank Geometry H dim V (H) R(H)

2 G(3 · S4(2)) 11 infinite

3 G(M24) 11 C11

4 G(Co1) 24 Λ
(24)

5 G(M) 0 M

n G(3[n2 ]2 · S2n(2)) (2n+ 1) + 2n(2n − 1) infinite

The knowledge of universal representations groups enables us to con-
struct and prove simple connectedness of so-called affine c-extensions
AF(G, R(G)) of the known P - and T -geometries G (cf. Section 2.7). These
extensions have diagrams

1
◦ c

2
◦

2
◦ · · ·

2
◦

2
◦ P

1
◦

or

1
◦ c

2
◦

2
◦ · · ·

2
◦

2
◦ ∼

2
◦.

depending whether G is a P - or T -geometry.
We formulate here the results on simple connectedness and the full au-

tomorphisms groups.
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Proposition 6 The following assertions hold:

(i) AF(G(M22), C11) is simply connected with the automorphism group
211 : AutM22;

(ii) G(M23) does not possess flag-transitive affine c-extensions;

(iii) AF(G(Co2),Λ
(23)

) is simply connected with the automorphism group
223 : Co2;

(iv) AF(G(J4), J4) is simply connected with the automorphism group J4 o2;

(v) AF(G(BM), 2·BM) is simply connected with the automorphism group
(2 ·BM ∗ 2 ·BM).2;

(vi) AF(G(M24), C11) is simply connected with the automorphism group
211 : M24;

(vii) AF(G(Co1),Λ
(24)

) is simply connected with the automorphism group
224 : Co1;

(viii) AF(G(M),M) is simply connected with the automorphism group
M o 2 (the Bimonster).

The analysis of the amalgam A is via consideration of the normal factors
of the parabolics G1 and Gn. This analysis brings us to a restricted number
of possibilities for the normal factors.

We proceed by accomplishing the following sequence of steps (we follow
notation as introduced at the end of Section 1.1). First we reconstruct
up to isomorphism the point stabilizer G1. Our approach is inductive so
we assume that the action G1 = G1/K1 of G1 on resG(x1) is one of the
known actions in Table I or II. Then we turn to G2, or more precisely to
the subamalgam B = {G1, G2} in A. The subgroup G2 is the stabilizer
of the line x2 and it induces Sym3 on the triple of points incident to x2

(of course x1 is in this triple). Hence G12 = G1 ∩ G2 contains a subgroup
K−2 of index 2 (the pointwise stabilizer of x2), which is normal in G2 and
G2/K

−
2
∼= Sym3. Therefore we identify K−2 as a subgroup of G1, determine

the automorphism group of K−2 and then classify the extensions of K−2 by
automorphisms forming Sym3. On this step we can refine the choice of
the isomorphism type of G1, since within the wrong choice K−2 might not
possess the required automorphisms.

A glance at Tables I and II gives the following.

Proposition 7 Let F be the residue of a point in a (known) P - or T -
geometry of rank n ≥ 2 (so that either n ≥ 3 and F is itself a P - or T -
geometry or n = 2 and F is of rank 1 with 2 or 3 points, respectively) and
let F be a flag-transitive automorphism group of F . Then |AutF : F | ≤ 2.
2

This immediately gives the following
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Proposition 8 In the above terms G2 = G2/K2 is isomorphic to a sub-
group of index at most 2 in the direct product

G2/K
−
2 ×G2/K

+
2 ,

where G2/K
−
2
∼= Sym3 and G2/K

+
2 is a flag-transitive automorphism group

of res+
G (x2). In particular the centre of O2(G2/K2) contains a subgroup X

which permutes transitively the points incident to x2. 2

By the above proposition the automorphism of K−2 we were talking
about can always be chosen to commute with O2(K−2 /K2).

Next we extend B to the rank 3 amalgam C = {G1, G2, G3}. Towards
this end we first identify D = {G13, G23} as a subamalgam in B. Since the
action of G1 on resG(x1) is known, G13 and G123 are specified uniquely up
to conjugation in G1. By Proposition 8 G23 = 〈G123, Y 〉, where Y maps
onto the subgroup X as in that proposition. Since K2 is a 2-group, we can
choose Y to be a Sylow 3-subgroup (of order 3) in K+

2 .

Thus we obtain the amalgam C̃ = {G1, G2, G̃3}, where G̃3 is the univer-
sal completion (free amalgamated product) of the subamalgam D in B. In

order to get the amalgam C we have to identify in G̃3 the normal subgroup
N such that G3 = G̃3/N . The subgroup K−3 can be specified as the largest
subgroup in G123 which is normal in both G13 and G23. Then

G3/K
−
3
∼= L3(2), G13/K

−
3
∼= G23/K

−
3
∼= Sym4

and the latter two quotients are maximal parabolics in the former one. In
all cases the parabolics are 2-constrained and the images of both G13 and
G23 in OutK−3 are isomorphic to Sym4. These two images must generate
in OutK−3 the group L3(2) (otherwise there is no way to extend B to a
correct C). Hence we may assume that

G̃3/(K
−
3 CG̃3

(K−3 )) ∼= L3(2).

Since G̃3/K
−
3 N is also L3(2), we see that N must be a subgroup in the

centraliser of K−3 in G̃3, which trivially intersects K−3 and such that

K−3 N = K−3 CG̃3
(K−3 ).

The easiest situation is when the centre of K−3 is trivial in which case we
are forced to put N = C

G̃3
(K−3 ), so that N is uniquely determined (8.5.1).

In fact the uniqueness of N can be proved under a weaker assumption:
the centre of K−3 does not contain 8-dimensional composition factors with

respect to G̃3/K
−
3 CG̃3

(K−3 ) ∼= L3(2) (8.5.3). The following property of

the known P - and T -geometries (which can easily be checked by inspection
using information contained in [Iv99] and [IMe99]) shows that (8.5.3) always
applies when B is isomorphic to the amalgam from a known example.

Proposition 9 Let (H, H) be a pair from Table I or II and suppose that the
rank of H is at least 3. Let π be a plane in H (an element of type 3), H(π) be
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the stabilizer of π in H and K−(π) be the kernel of the action of H(π) on the
set of points and lines incident to π (these points and lines form a projective
plane of order 2). Then every chief factor of H(π) inside Z(K−(π)) is an
elementary abelian 2-group which is either 1- or 3-dimensional module for
H(π)/K−(π) ∼= L3(2). 2

After C is reconstructed, the structure of the whole amalgam A is pretty
much forced. Indeed G4 is a completion of the subamalgam E = {Gi4 |
1 ≤ i ≤ 3} in C. This subamalgam is always uniquely determined in C
(up to conjugation). On the other hand, the residue res−G (x4) is the rank 3
projective GF (2)-geometry, which is simply connected. By the fundamental
principle (1.4.6) this implies that G4 is the universal completion of E . Hence
there is a unique way to extend C to the rank 4 amalgam and to carry on
in the same manner to get the whole amalgam A of maximal parabolics.

We should like to thank our colleagues, and especially C. Wiedorn and
D.V. Pasechnik for their support and help while we were writing this book.

We dedicate the book to the memory of A.I. Kostrikin, without whose
encouragement the book would not have been written.
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Chapter 1

Preliminaries

In this introductory chapter after recalling the main notions and nota-
tion concerning digram geometries and their flag-transitive automorphism
groups we prove the fundamental principle (Theorem 1.4.5) which relates
the universal cover of a geometry G and the universal completion of the
amalgam A of maximal parabolics in a flag-transitive automorphism group
G of G. This principle lies in the foundation of our approach to the classi-
fication of flag-transitive geometries in terms of their diagrams. In the last
section of the chapter we recall what is meant by a representation of ge-
ometry. The importance of representations for our classification approach
is explained in Proposition 1.5.1 which shows that under certain natural
assumptions one of the chief factors of the stabilizer of a point in a flag-
transitive automorphism group carries a representation of the residue of
the point (this result is generalized in Proposition 9.4.1 for other maximal
parabolics).

1.1 Geometries and diagrams

In this section we recall the main terminology and notations concerning
diagram geometries (cf. Introduction in [Iv99] and references therein).

An incidence system of rank n is a set G of elements which is a disjoint
union of subsets Gα1 , ...,Gαn (where Gαi is the set of elements of type αi in
G) and a binary reflexive symmetric incidence!relation on G, with respect
to which no two distinct elements of the same type are incident. We can
identify G with its incidence graph Γ = Γ(G) having G as the set of vertices,
in which two distinct elements are adjacent if they are incident. A flag
in G is a set Φ of pairwise incident elements (the vertex-set of a complete
subgraph in the incidence graph). The type (respectively cotype) of Φ is the
set of types in G present (respectively not present) in Φ. The sizes of these
sets are the rank and the corank of Φ. By the definition a flag contains at
most one element of any given type. If Φ is a flag in G, then the residue
resG(Φ) of Φ in G is an incidence system whose elements are those from G\Φ
incident to every element in Φ with respect to the induced type function
and incidence relation.

1
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An incidence system G of rank n is called a geometry if for every flag Φ
(possibly empty) of corank at least 2 and every αi 6= αj from the cotype
of Φ the subgraph in the incidence graph induced by Gαi ∩ Gαj ∩ resG(Φ)
is nonempty and connected (this implies that a maximal flag contains ele-
ments of all types). Clearly the residue of a geometry is again a geometry.

In what follows unless stated otherwise, the set of types in a geometry
of rank n is taken to be {1, 2, ..., n}. A diagram of a geometry G is a graph
on the set of types in G in which the edge (or absence of such) joining i and
j symbolises the class of geometries appearing as residues of flags of cotype
{i, j} in G. Under the node i it is common to write the number qi such
that every flag of cotype i in G is contained in exactly qi + 1 maximal flags.
Normally the types on the diagram increase rightwards. We will mainly
deal with the following rank 2 residues:

q1
◦

q2
◦ - generalised digon: any two elements of different types are

incident, the incidence graph is complete bipartite with parts of size q1 + 1
and q2 + 1;

q
◦

q
◦ - projective plane pg(2, q) of order q;

q1
◦

q2
◦ - generalised quadrangle pq(q1, q2) of order (q1, q2);

2
◦

2
◦ - the generalized quadrangle G(S4(2)) of order (2, 2), whose

elements are the 2-element subsets of a 6-set and the partitions of the 6-
set into three 2-element subsets with the natural incidence relation; the
automorphism group is S4(2) ∼= Sym6 and the outer automorphism of this
group induces a diagram automorphism of G(S4(2));

2
◦ ∼

2
◦ - the triple cover G(3 · S4(2)) of G(S4(2)) associated with

the non-split extension 3 · S4(2) ∼= 3 · Sym6;

2
◦ P

1
◦ - the geometry G(Alt5) of edges and vertices of the Petersen

graph; the vertices of the Petersen graph are the 2-element subsets of a 5-set
and two such subsets are adjacent if they are disjoint;

1
◦ c

q
◦ - the geometry of 1- and 2-element subsets of a (q+ 2)-set;

in the case q = 2 this is the affine plane of order 2.

If Φ is a flag in G, then the diagram of resG(Φ) is the subdiagram in the
diagram of G induced by the cotype of Φ.

The notation we are about to introduce can be applied to any rank
n geometry G, but it is particularly useful when G belongs to a string
diagram, i.e., when the residue of a flag of cotype {i, j} is a generalized
digon whenever |i− j| ≥ 2.

For an element xi of type i, where 1 ≤ i ≤ n, by res+
G (xi) and res−G (xi) we

denote the set of elements of types larger than i and less than i, respectively,
which are incident to xi. When G belongs to a string diagram they are
residues of a flag of type {1, ..., i} containing xi and a flag of type {i, ..., n}
containing xi. If G is an automorphism group of G (often assumed to be
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flag-transitive), then G(xi) is the stabilizer of xi in G, K(xi), K
+(xi) and

K−(xi) are the kernels of the actions of G(xi) on resG(xi), res+
G (xi) and

res−G (xi), respectively. By L(xi) we denote the kernel of the action of G(xi)
on the set of elements yi of type i in G such that there exist a premaximal
flag Ψ of cotype i such that both Ψ∪ {xi} and Ψ∪ {yi} are maximal flags.
Notice that if G belongs to a string diagram and x1 is a point then L1 is
the elementwise stabilizer in G1 of the set of points collinear to x1.

When we deal with a fixed maximal flag Φ = {x1, ..., xn} in G, we write
Gi instead of G(xi), Ki instead of K(xi), etc. If J ⊆ {1, 2, ..., n}, then

GJ =
⋂
j∈J

Gj

and we write, for instance G12 instead of G{1,2} and similar. Most of our
geometries are 2-local, so that the parabolics are 2-local subgroups and we
put Q(xi) = O2(G(xi)) (which can also be written simply as Qi).

1.2 Coverings of geometries

Let H and G be geometries (or more generally incidence systems). A mor-
phism of geometries is a mapping ϕ : H → G of the element set of H into
the element set of G which maps incident pairs of elements onto incident
pairs and preserves the type function. A bijective morphism is called an
isomorphism.

A surjective morphism ϕ : H → G is said to be a covering of G if for
every non-empty flag Φ of H the restriction of ϕ to the residue resH(Φ) is
an isomorphism onto resG(ϕ(Φ)). In this case H is a cover of G and G is a
quotient of H. If every covering of G is an isomorphism then G is said to be
simply connected. Clearly a morphism is a covering if its restriction to the
residue of every element (considered as a flag of rank 1) is an isomorphism.

If ψ : G̃ → G is a covering and G̃ is simply connected, then ψ is the
universal covering f and G̃ is the universal cover of G. The universal cover
of a geometry exists and it is uniquely determined up to isomorphism. If
ϕ : H → G is any covering then there exists a covering χ : G̃ → H such that
ψ is the composition of χ and ϕ.

A morphism ϕ : H → G of arbitrary incidence systems is called an s-
covering if it is an isomorphism when restricted to every residue of rank
at least s. This means that if Φ is a flag whose corank is less than or
equal to s, then the restriction of ϕ to resH(Φ) is an isomorphism. An
incidence system, every s-cover of which is an isomorphism, is said to be
s-simply connected. The universal s-cover of a geometry exists in the class
of incidence systems and it might or might not be a geometry. It is clear
that in the case s = n−1 “s-covering” and “covering” mean the same thing.

An isomorphism of a geometry onto itself is called an automorphism.
By the definition an isomorphism preserves the types. Sometimes we will
need a more general type of automorphisms which permute types. We will
refer to them as diagram automorphisms.
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The set of all automorphisms of a geometry G form a group called the
automorphism group of G and denoted by AutG. An automorphism group
G of G (that is a subgroup of AutG) is said to be flag-transitive if any two
flags Φ1 and Φ2 in G of the same type are in the same G-orbit. Clearly
an automorphism group is flag-transitive if and only if it acts transitively
on the set of maximal flags in G. A geometry G possessing a flag-transitive
automorphism group is said to be flag-transitive.

Let ϕ : H → G be a covering and H be a group of automorphisms of H.
We say that H commutes with ϕ if for every h ∈ H whenever ϕ(x) = ϕ(y)
for x, y ∈ H, the equality ϕ(xh) = ϕ(yh) holds. In this case we can define
the action of h on G via ϕ(x)h = ϕ(xh). Let the induced action be denoted
by H̄. The kernel of the action is called the subgroup of deck transformation
in H with respect to ϕ.

The following observation is quite important.

Lemma 1.2.1 Let ϕ : H → G be a covering of geometries and H be a flag-
transitive automorphism group of H commuting with ϕ. Then the action
H̄ induced by H on G is flag-transitive. 2

Let G be a geometry (or rather an incidence system) of rank n and N
be a group of automorphisms of G. Then the quotient of G over N is an
incidence system Ḡ whose elements of type i are the orbits of N on Gi and
two N -orbits, say Ω and ∆ are incident if some ω ∈ Ω is incident to some
δ ∈ ∆ in G. If the mapping ϕ : G → Ḡ which sends every element x ∈ G
onto its N -orbit, is a covering and N is normal in H then it is easy to see
that H commutes with ϕ.

1.3 Amalgams of groups

Our approach to classify P - and T -geometry is based on the method of
group amalgams. This method can be applied to the classification of other
types of geometries in terms of their diagrams and already has been proved
to be adequate for instance within the classification of c-extensions of clas-
sical dual polar spaces [Iv97], [Iv98].

Let us recall the definition of amalgam and related notions briefly intro-
duced in volume 1 [Iv99]. Here we make our notation slightly more explicit
and general.

Definition 1.3.1 An amalgam A of finite type and rank n ≥ 2 is a set such
that for every 1 ≤ i ≤ n there is a subset Ai in A and a binary operation
?i on Ai such that the following conditions hold:

(A1) (Ai, ?i) is a group for 1 ≤ i ≤ n;

(A2) A = ∪ni=1Ai;

(A3) |Ai ∩Aj | is finite if i 6= j and ∩ni=1Ai 6= ∅

(A4) if x, y ∈ Ai ∩Aj then x ?i y = x ?j y.
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Abusing the notation we often write A = {Ai | 1 ≤ i ≤ n} in order
to indicate explicitly which groups constitute A. In what follows, unless
explicitly stated otherwise all amalgams under consideration will be of finite
type.

Let A = {Ai | 1 ≤ i ≤ n} be an amalgam. A completion of A is a pair
(G,ϕ) where G is a group and ϕ is a mapping of A into G such that

(C1) G is generated by the image of ϕ;

(C2) for every i the restriction of ϕ to Ai is a homomorphism, i.e.,

ϕ(x ?i y) = ϕ(x) · ϕ(y) for all x, y ∈ Ai

(here “·” stands for the group multiplication in G).

If (G1, ϕ1) and (G2, ϕ2) are two completions of the same amalgam A
then a homomorphism χ of G1 onto G2 is said to be a homomorphism of
completions if ϕ2 is the composition of ϕ1 and χ, i.e., if ϕ2(x) = χ(ϕ1(x))
for all x ∈ A. If K is the kernel of χ then (G2, ϕ2) is called the quotient
of (G1, ϕ1) over K. Since G2 is isomorphic to G1/K via isomorphism
ϕ2(x) = ϕ1(x)K for x ∈ A, the completion (G2, ϕ2) is determined by
(G1, ϕ1) and K.

When the mapping ϕ is irrelevant or clear from the context we will talk
about a completion G of A. The completion (G,ϕ) is said to be faithful if
ϕ is injective.

Two elements x, y ∈ A are said to be conjugate inA if there is a sequence
x0 = x, x1, ..., xm = y of elements of A such that for every 1 ≤ j ≤ m the
elements xj−1 and xj are contained in Ai (where i must depend on j) and
are conjugate in Ai (in the sense that xi = z−1xi−1z for some z ∈ Ai). It
is easy to see that if (G,ϕ) is a completion of A then ϕ(x) and ϕ(y) are
conjugate in G whenever x and y are conjugate in A.

For an amalgam A = {Ai | 1 ≤ i ≤ n} let U(A) be the group defined
by the following presentation:

U(A) = 〈ux, x ∈ A | uxuy = uz if x, y, z ∈ Ai for some i and x ?i y = z〉.

Thus the generators of U(A) are indexed by the elements of A and the
relations are all the equalities which can be seen in the groups constituting
the amalgam.

Lemma 1.3.2 In the above terms let ν be the mapping of A into U(A)
defined by ν : x 7→ ux for all x ∈ A. Then (U(A), ν) is a completion of A
which is universal in the sense that every completion of A is a quotient of
(U(A), ν).

Proof. The fact that (U(A), ν) is a completion follows directly from
the definitions. Let (G,ϕ) be any completion of A. By (C1) there is
homomorphism ψ onto G of a group freely generated by the elements fx,
one for every x ∈ A such that ψ(fx) = ϕ(x). By (C2) whenever x, y, z ∈ Ai
for some 1 ≤ i ≤ n and x?i y = z, we have ψ(fx) ·ψ(fy) = ψ(fz) and hence
the result. 2
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Thus there is a natural bijection between the completions of A and
the normal subgroups of the universal completion (group) U(A). If N is a
normal subgroup in U(A) then the corresponding completion is the quotient
of (U(A), ν) over N . The following result is rather obvious.

Lemma 1.3.3 An amalgam A possesses a faithful completion if and only
if its universal completion is faithful. 2

The subgroup B := ∩ni=1Ai is called the Borel subgroup of A. By (A3)
and (A4) B is a finite group in which the group operation coincides with
the restriction of ?i for every 1 ≤ i ≤ n, in particular the identity element
of B is the identity element of every (Ai, ?i). The following result can be
easily deduced form Section 35 in [Kur60].

Proposition 1.3.4 Let A = {Ai | 1 ≤ i ≤ n} be a amalgam of rank n ≥ 2
with the Borel subgroup B. Suppose that B = Ai ∩Aj for all 1 ≤ i < j ≤ n
(which always holds when n = 2) and A 6∈ Ai for 1 ≤ i ≤ n. Then the
universal completion of A is faithful and U(A) is the free amalgamated
product of the groups Ai over the subgroup B, in particular it is infinite.2

One should not confuse the set of all amalgams and their very special
class covered by (1.3.4). For an amalgam A of rank n ≥ 3 the universal
completions might of might no be faithful and might or might be infinite
or finite (or even trivial). In general it is very difficult to decide what is
U(A) and this problem is clearly equivalent to the identification problem
of a group defined by generators and relations.

A subgroup M of B which is normal in (Ai, ?i) for every 1 ≤ i ≤ n
is said to be a normal subgroup of the amalgam A. The largest normal
subgroup in A is called the core of A and the amalgam is said to be simple
if its core is trivial (the identity subgroup of B). Notice that if M is normal
in A then ϕ(M) is a normal subgroup in G for every completion (G,ϕ) of
A, but even when A is a simple amalgam, a completion group G is not
necessary simple.

1.4 Simple connectedness via universal com-
pletion

Let G be a geometry of rank n, G be a flag-transitive automorphism group
of G and Φ = {x1, ..., xn} be a maximal flag in G, where xi is of type i. Let
Gi = G(xi) be the stabilizer of xi in G (the maximal parabolic of type i
associated with the action of G on G) and

A := A(G,G) = {Gi | 1 ≤ i ≤ n}

be the amalgam of the maximal parabolics.
We define the coset geometry C = C(G,A) in the following way (it might

not be completely obvious at this stage that C is a geometry rather than
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just an incidence system). The elements of type i in C are the right cosets
of the subgroup Gi in G, so that

Ci = {Gig | g ∈ G} and

C =
⋃

1≤i≤n

Ci (disjoint union).

Two different cosets are incident if and only if they have an element in
common:

Gih ∼ Gjk ⇐⇒ Gih ∩Gjk 6= ∅.

Lemma 1.4.1 Let % be the mapping which sends the coset Gig from Ci
onto the image xgi of xi under g ∈ G:

% : Gig 7→ xgi .

Then % is an isomorphism of C onto G.

Proof. First notice that % is well defined, since if g′ ∈ Gig, say g′ = fg
for f ∈ Gi, we have

xg
′

i = xfgi = (xfi )g = xgi .

This also shows that for yi ∈ Gi the set %−1(yi) consists of the elements of
G which map xi onto yi.

Next we check that % preserves the incidence relation. Suppose first
that Gih and Gjk are incident in C which means they contain an element
g in common. Then Gih = Gig, Gjk = Gjg and

{%(Gih), %(Gjk)} = {xgi , x
g
j}.

Since xi and xj are incident and g is an automorphism of G, xgi and xgj
are also incident. On the other hand, suppose that yi = %(Gih) and yj =
%(Gjk) are incident elements of type i and j in G. Since G acts flag-
transitively on G, there is g ∈ G such that {yi, yj} = {xgi , x

g
j}. By the above

observation g ∈ Gih ∩Gjk which means that Gih and Gjk are incident in
C. 2

In the above terms, for 1 ≤ i ≤ n the maximal parabolic Gi acts flag-
transitively on the residue resG(xi) of xi in G. By (1.4.1) we have the
following.

Corollary 1.4.2 The residue resG(xi) is isomorphic to the cosets geometry
C(Gi,Ai), where

Ai = {Gi ∩Gj | 1 ≤ j ≤ n, j 6= i}.

2

By the above corollary the isomorphism types of the residues in G are
completely determined by the amalgam A of maximal parabolics in a flag-
transitive automorphism group. Next we discuss up to which extend the
amalgam A determines the structure of the whole of G.
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Let G and G′ be geometries of rank n with flag-transitive automorphism
groups G and G′, amalgams A and A′ of maximal parabolics associated
with maximal flags Φ = {x1, ..., xn} and Φ′ = {x′1, ..., x′n}, respectively.
Suppose there is an isomorphism τA of A′ onto A (which maps G′i = G′(x′i)
onto Gi = G(xi)). Suppose first that τA is a restriction to A′ of a homo-
morphism τG of G′ onto G. Then τG induces a mapping τC of C′ = C(G′,A′)
(isomorphic to G′) onto C = C(G,A) (isomorphic to G):

τC : G′ig
′ 7→ GiτG(g′)

for all 1 ≤ i ≤ n and g′ ∈ G′.

Lemma 1.4.3 The mapping τC is a covering of geometries.

Proof. By the definition τC preserves the type function. If G′ih
′ and

G′jk
′ are incident (contain a common element g′, say) then their images

both contain the element τG(g′) and hence they are incident as well. Thus
τC is a morphism of geometries. By (1.4.2) and the flag-transitivity of G′,
τC maps the residue of x′ in G′ onto the residue of τC(x

′) in G and the result
follows. 2

In the above terms G and G′ are two completions of the same amalgam
A ∼= A′. In general one can not guarantee that one of the completions is a
homomorphic image of the other one. But this can be guaranteed if one of
the completions is universal.

With G and A as above, let G̃ = U(Ã) be the universal completion

of an amalgam Ã = {G̃i | 1 ≤ i ≤ n} and suppose that Ã possesses an

isomorphism τ̃A onto A. Since G̃ is a universal completion of Ã by (1.4.3)

the geometry G̃ := C(G̃, Ã) possesses a covering τ̃C onto G = C(G,A). We
formulate this in the following lemma.

Lemma 1.4.4 Let G be a faithful completion of the amalgam A. Then
there is a covering of G̃ = C(G̃, Ã) onto C(G,A). 2

The following result was established independently in [Pasi85], [Ti86]
and in an unpublished manuscript by the second author of the present
book (who claims that the first author lost it) dated around 1984.

Theorem 1.4.5 The covering τ̃C is universal.

Proof. Let
τ̂ : Ĝ → G

be the universal covering. Let Φ̂ = {x̂1, ..., x̂n} be a maximal flag in Ĝ
being mapped under τ̂ onto the maximal flag Φ = {x1, ..., xn} in G (i.e.,
τ̂(x̂i) = xi for 1 ≤ i ≤ n).

For g ∈ Gi let us define an automorphism ĝ = ĝ(i) of Ĝ as follows. First

x̂ĝi = x̂i. Next, if x̂ ∈ Ĝ is arbitrary, in order to define x̂ĝ we proceed in the
following way. Consider a path

γ̂ = (ŷ0 = x̂i, ŷ1, ..., ŷm = x̂)
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in Ĝ joining x̂i with x̂ (such a path exists since Ĝ is connected). Let

γ = (y0 = xi, y1, ..., ym)

be the image of γ̂ under τ̂ (i.e., yj = τ̂(ŷj) for 0 ≤ j ≤ m) and let

γg = (yg0 = y0 = xi, y
g
1 , ..., y

g
m)

under the element g. Then, since γg is a path starting at xi, there is a
unique path

γ̂g = (ŷg0 = ŷ0 = x̂i, ŷ
g
1 , ..., ŷ

g
m)

in Ĝ starting at x̂i and being mapped onto γg under τ̂ . We define x̂ĝ to be

the end term of γ̂g (i.e., ŷgm in the above terms). First we show that ĝ is
well defined, which means it is independent on the particular choice of the
path γ̂ joining x̂i and x̂. Suppose that γ̂ and δ̂ are paths both starting at x̂i
and ending at x̂. Then by a theorem from algebraic topology [Sp66] since
τ̂ is universal, the corresponding images γ and δ are homotopic. Since g is
an automorphism of G, it maps the pairs of homotopic paths onto the pairs
of homotopic paths. Hence γg and δg are homotopic, which means that
the end terms of their liftings γ̂g and δ̂g coincide. Thus ĝ is well defined.
Finally it is easy to see from the definition that ĝ is an automorphism of Ĝ.

Let
Ĝi = {ĝ = ĝ(i) | g ∈ Gi}.

It is straightforward to check that ĝ1g2 = ĝ1ĝ2 and ĝ−1 = ĝ−1. So Ĝi is a
group and λi : g 7→ ĝ(i) is a surjective homomorphism. It is also clear that
for ĝ ∈ Ĝi the preimage λ−1

i (ĝ) is a uniquely determined element of Gi,

so λi is an isomorphism of Gi onto Ĝi. Let Â = {Ĝi | 1 ≤ i ≤ n} be the

amalgam formed by the subgroups Ĝi and λ be the mapping of A onto Â
whose restriction to Gi coincides with λi for every 1 ≤ i ≤ n. We claim that
λ is an isomorphism of amalgams. Since the λi are group isomorphisms, in
order to achieve this, it is sufficient to show that λ is well defined. Namely
for g ∈ Gi ∩ Gj we have to show that ĝ(i) = ĝ(j). Let x̂ ∈ Ĝ and suppose
that γ̂ = (x̂i = ŷ0, ŷ1, ..., ŷm = x̂) is a path used to define the image of x̂
under ĝ(i). Swapping i and j if necessary, we assume that ŷ1 6= x̂j . Then

the path δ̂ = (x̂j , ŷ0, ..., ŷm = x̂) can be used to define the image of x̂ under
ĝ(j). Since g fixes the path (xj , xi) it is quite clear that the lifted paths γ̂g

and δ̂g have the same end term. Hence the images of x̂ under ĝ(i) and ĝ(j)

coincide. Since the element x̂ was arbitrary, we conclude that ĝ(i) = ĝ(j).
Thus µ := λ−1 is an isomorphism of Â onto A. Let Ĝ be the subgroup

in the automorphism group of Ĝ generated by Â. Then clearly µ induces a
homomorphism of Ĝ onto G which commutes with the covering τ̂ . Since Gi
is the stabilizer of xi in G and Ĝi maps isomorphically onto Gi under µ, we
conclude that Ĝi is the stabilizer of x̂i in Ĝ. Now by (1.4.1) we observe that

Ĝ is isomorphic to C(Ĝ, Â) and since we have proved that Â is isomorphic

to A ∼= Ã, by (1.4.3) there must be a covering τ of G̃ onto Ĝ. Since τ̂ is
universal, τ must be an isomorphism and hence τ̃C is universal as well. 2

The following direct consequence of Theorem 1.4.5 is very useful.
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Corollary 1.4.6 Suppose that a geometry G of rank n ≥ 3 is simply con-
nected and G is a group acting flag-transitively (and possibly unfaithfully)
on G. Then G is the universal completion of the amalgam A(G,G).

1.5 Representations of geometries

We say that a geometry G of rank n belongs to a string diagram if all rank 2
residues of type {i, j} for |i− j| > 1 are generalized digons. In this case the
types on the diagram usually increase rightward from 1 to n. The elements
which correspond, respectively, to the leftmost, the second left, the third
left and the rightmost nodes on the diagram will be called points, lines,
planes and hyperplanes:

d d d d d.. .
X Y Z

points lines planes hyperplanes

The graph Γ = Γ(G) on the set of points of G in which two points are
adjacent if and only if they are incident to a common line is called the
collinearity graph of G.

Given such a geometry G and a vector space V , one can ask is it possible
to define a mapping ϕ from the element set of G onto the set of proper
subspaces of V , such that dim ϕ(x) is uniquely determined by the type of
x and whenever x and y are incident, either ϕ(x) ≤ ϕ(y) or ϕ(y) ≤ ϕ(x)?
This question leads to a very important and deep theory of presheaves on
geometries which was introduced and developed in [RSm86] and [RSm89].
A special class of the presheaves, described below, has played a crucial rôle
in the classification of P - and T -geometries.

Let G be a geometry with elements of one type called points and elements
of some other type called lines. Unless stated otherwise, if G has a string
diagram, the points and lines are as defined above. Suppose that G is of
GF (2)-type which means that every line is incident to exactly three points.
Let Π and L denote, respectively, the point set and the line set of G. In
order to simplify the notation we will assume that every line is uniquely
determined by the triple of points it is incident to. Let V be a vector space
over GF (2). A natural representation of (the point–line incidence system
associated with) G is a mapping ϕ of Π ∪ L into the set of subspaces of V
such that

(i) V is generated by Im ϕ,

(ii) dim ϕ(p) = 1 for p ∈ Π and dim ϕ(l) = 2 for l ∈ L,

(iii) if l ∈ L and {p, q, r} is the set of points incident to l, then
{ϕ(p), ϕ(q), ϕ(r)} is the set of 1-dimensional subspaces in ϕ(l).

If G possesses a natural representation then it possesses the universal
abelian representation ϕa such that any other natural representation is a



1.5. REPRESENTATIONS OF GEOMETRIES 11

composition of ϕa and a linear mapping. The GF (2)-vector–space under-
lying the universal natural representation (considered as an abstract group
with additive notation for the group operation) has the presentation

V (G) = 〈vp, p ∈ P | vp + vp = 0; vp + vq = vq + vp for p, q ∈ P ;

vp + vq + vr = 0, if {p, q, r} = l ∈ L〉

and the universal representation itself is defined by

ϕa : p 7→ vp for p ∈ P

and

ϕa : l 7→ 〈vp, vq, vr〉 for {p, q, r} = l ∈ L.

In this case V (G) will be called the universal representation module of
G. Notice that V (G) can be defined for any geometry with three points
on a line and the group might be non-trivial even if G does not possess a
natural representation.

Natural representations of geometries usually provide a nice model for
geometries and “natural” modules for their automorphism groups. Besides
that, in a certain sense natural representations control extensions of geome-
tries. Below we explain this claim.

Let G be a geometry of rank at least 3 with a string diagram such that
the residue of a flag of cotype {1, 2} is a projective plane of order 2, so that
the diagram of G has the following form:

2
◦

2
◦ X

q3
◦ · · ·

Let G be a flag-transitive automorphism group of G. Let p be a point of G
(an element of type 1), G1 = G(p) and H = resG(p). Then the points and
lines of H are the lines and planes of G incident to p. Let K be the kernel
of the (flag-transitive) action of G1 on H, let U be the action induced by K
on the set of points collinear to p and suppose that U 6= 1. Let l = {p, q, r}
be a line containing p. Since every k ∈ K stabilizes the flag {p, l} it either
fixes q and r or swaps these two points. Furthermore, since U 6= 1 and G1

acts transitively on the point-set of H, some elements of K must swap q
and r. Hence U is a non-identity elementary abelian 2-group (which can
be treated as a GF (2)-vector space). The set of elements in U which fix
l point-wise is a hyperplane U(l) in U . Let U∗ be the dual space of U
and U∗(l) be the 1-subspace in U∗ corresponding to U(l). Then we have a
mapping

ϕ : l 7→ U∗(l)

from the point-set of H into the set of 1-spaces in U∗. We claim that ϕ
defines a natural representation of H. For this purpose consider a plane π
in G containing l. By the diagram the set F = res−G (π) of points and lines
in G incident to π form a projective plane pg(2, 2) of order 2. By the flag-
transitivity of G the subgroup G3 = G(π) acts flag-transitively on F . The
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subgroup K is contained in G3 and since U 6= 1, K induces on F a non-
trivial action (whose order is a power of 2). Since pg(2, 2) possesses only
one flag-transitive automorphism group of even order, we conclude that G3

induces on F the group L3(2). Then G1 ∩G3 induces Sym4
∼= 22.Sym3 on

F and since K is a normal 2-subgroup in G1 contained in G3, we observe
that the action of U on F is of order 22. Let l1 = l, l2 and l3 be the lines
incident to both p and π. Then by the above the U(li) are pairwise different
hyperplanes for 1 ≤ i ≤ 3 and U(li)∩U(lj) is the kernel of the action of U
on F (having codimension 2 in U) for all 1 ≤ i < j ≤ 3. In dual terms this
means that the U∗(li) are pairwise different 1-spaces and

〈U∗(li) | 1 ≤ i ≤ 3〉

is 2-dimensional. Hence ϕ is a natural representation and we have the
following.

Proposition 1.5.1 Let G be a geometry with diagram of the form

2
◦

2
◦ X

q3
◦ · · · ,

let G be a flag-transitive automorphism group of G, let p be a point in G
(an element of the leftmost type on the diagram), let K(p) be the kernel
of the action of G(p) on H = resG(p), let U be the action which K(p) in-
duces on the set of points collinear to p and suppose that U 6= 1. Then
U is an elementary abelian 2-group, whose dual U∗ supports a natural
G(p)/K(p)-admissible representation of resG(p), in particular, U∗ is a quo-
tient of V (H). 2

When we follow an inductive approach to classification of geometries, we
can assume that H and its flag-transitive automorphism groups are known
and we are interested in geometries G which are extensions of H by the
projective plane edge in the diagram. Then the section U is either trivial
or related to a natural representation of H. In particular this section is
trivial if H does not possess a natural representation. In practice it often
happens that in this case there are no extensions of H at all. One of the
reasons the the following result.

Proposition 1.5.2 In the hypothesis of (1.5.1) let let H be the action in-
duced by G(p) on H (so that H ∼= G(p)/K(p)). Let l and π be a line and
a plane in G incident to p (which are a point and a line in H). Suppose
further that

(i) U = 1 (which always holds when V (H) is trivial);

(ii) H(π) induces Sym3 on the set lines incident to both p and π.

Then H(l) contains a subgroup of index 2.

Proof. The stabilizer G(π) of π in G induces a flag-transitive action X
of the residual projective plane of order 2 formed by the points and lines in
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G incident to π. Hence by [Sei73] X ∼= L3(2) or X ∼= F 3
7 . By (ii) the latter

case is impossible. Hence G(l) induces Sym3 on the set of point-set of l
(we can see this action already in G(l) ∩ G(π) assuming that l and π are
incident). Hence the point-wise stabilizer of l has index 2 in G(p) ∩ G(l).
Finally by (i) K(p) fixes every point collinear to p and hence the index 2
subgroup contains K(p). 2

For various reasons it is convenient to consider a non-abelian version of
natural representations. The universal representation group of a geometry G
with 3 points on every line has the following definition in terms of generators
and relations:

R(G) = 〈zp, p ∈ Π | z2
p = 1, zpzqzr = 1 if {p, q, r} = l ∈ L〉.

It is easy to observe that V (G) = R(G)/[R(G), R(G)]. Notice that genera-
tors zp and zq of R(G) commute whenever p and q are collinear. There are
geometries whose universal representation groups are perfect. In particu-
lar, the geometries G(J4), G(BM) and G(M) have non-trivial representation
groups while their representation modules are trivial.

We had originally introduced the notion of non-abelian representations
in order to simplify and to make more conceptional the non-existence proofs
for abelian representations, which are important for the classification of
amalgams of maximal parabolics. But this notion eventually led to a com-
pletely new research area in the theory of groups and geometries [Iv01].
It turned out that the knowledge of these representations is crucial for
construction of affine and c-extensions of geometries. More recently the
calculation of the universal representation group of G(M) has been used
in a new identification of the famous Y555-group with the Bimonster (cf.
Section 8.6 in [Iv99]).
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Part I

Representations
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Chapter 2

General features

In this chapter we present some technique for calculating representations
of geometries of GF (2)-type, i.e., with three points on a line. In the last
two sections we discuss some applications of the representations for con-
struction of c-extensions of geometries and non-split extensions of groups
and modules.

2.1 Terminology and notation

Let S = (Π, L) be a point-line incidence system with 3 points on every line.
This simply means that Π is a finite set and L is a set of 3-element subsets
of Π. We define the universal representation group of S by the following
generators and relations:

R(S) = 〈zp, p ∈ Π | z2
p = 1, zpzqzr = 1 if {p, q, r} = l ∈ L〉.

So the generators of R(S) are indexed by the points from Π subject to the
following relations: the square of every generator is the identity; the product
(in any order) of three generators corresponding to the point-set of a line is
the identity. The universal representation of S is the pair (R(S), ϕu) where
ϕu is the mapping of Π into R(S) defined by

ϕu : p 7→ zp for p ∈ Π.

Let ψ : R(S)→ R be a surjective homomorphism and ϕ be the composition
of ϕu and ψ (i.e., ϕ(p) = ψ(ϕu(p)) for every p ∈ Π). Then (R,ϕ) is a
representation of S. Thus a representation of S is a pair (R,ϕ) where R is
a group and ϕ is a mapping of Π into R such that

(R1) R is generated by the image of ϕ;

(R2) ϕ(p)2 = 1 for every p ∈ Π;

(R3) whenever {p, q, r} is a line, the equality ϕ(p)ϕ(q)ϕ(r) = 1 holds.

If in addition R is abelian, i.e.,

17
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(R4) [ϕ(p), ϕ(q)] = 1 for all p, q ∈ Π,

then the representation is said to be abelian. The order of a representation
(R,ϕ) is the order of R.

Let V (S) be the largest abelian factor group of R(S) (i.e., the quotient
of R(S) over its commutator subgroup), ψ be the corresponding homomor-
phism and ϕa be the composition of ϕu and ψ. Then (V (S), ϕa) is the
universal abelian representation and V (S) is the universal representation
module of S.

Let G be an automorphism group of S. Then the action

(zp)
g = zpg for p ∈ Π and g ∈ G

defines a homomorphism χ of G into the automorphism group of R(S). Let
(R,ϕ) be an arbitrary representation and N be the kernel of the homo-
morphism of R(S) onto R. Then (R,ϕ) is said to be G-admissible if and
only if N is χ(G)-invariant. In this case the action ϕ(p)g = ϕ(pg) defines a
homomorphism of G into the automorphism group of R. The universal rep-
resentation is clearly AutS-admissible and so is a representation for which
the kernel of the homomorphism ψ is a characteristic subgroup in R(S). In
particular (V (S), ϕa) is AutS-admissible.

If G is a geometry one type of whose elements are called points, some
other type is called lines and every line is incident to exactly three points
then by a representation of G we understand representations of its point-
line incidence system and we denote by (R(G), ϕu) and by (V (G), ϕa) the
universal and the universal abelian such representations.

The group V (S) is abelian generated by elements of order at most 2.
Hence it is an elementary abelian 2-group and can be treated as a GF (2)-
vector space. In this terms V (S) is the quotient of the power space 2Π of
Π (the set of all subsets of Π with addition performed by the symmetric
difference operator) over the image of 2L with respect to the incidence map
which sends a line l ∈ L onto its point-set (which is an element of 2Π).

Then the GF (2)-dimension of V (S) is the number of points minus the
GF (2)-rank of the incidence matrix whose rows are indexed by the lines
in L, columns are indexed by the points in Π and the (l, p)-entry is 1 if
p ∈ l and 0 otherwise (notice that every row contains exactly three non-
zero entries equal to 1). Thus the question about the dimension of the
universal representation module can (at least in principle) be answered by
means of linear algebra over GF (2).

The universal representation module V (S) is a GF (2)-module for the
automorphism group AutS and there is a natural bijection between the
AutS-admissible abelian representations and G-submodules in V (S). The
following easy lemma shows that in the point-transitive case V (S) does not
contain codimension 1 submodules.

Lemma 2.1.1 Let S = (Π, L) be a point-line incidence system with 3
points on every line, G be a group of automorphisms of S which acts tran-
sitively on Π and suppose that there is at least one line. Then there are no
G-admissible representations of order 2.
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Proof. Suppose that (R,ϕ) is a G-admissible representation of order 2,
say R = {1, f}. Since R is generated by the image of ϕ, the representation
is G-admissible and G is point-transitive, ϕ(p) = f for every p ∈ Π. Then
if l = {p, q, r} is a line, we have

ϕ(p)ϕ(q)ϕ(r) = f3 = f 6= 1

contrary to the assumption that ϕ is a representation. 2

Let (R,ϕ) be a representation of S = (Π, L) and Λ be a subset of Π.
Put

R[Λ] = 〈ϕ(y) | y ∈ Λ〉

(the subgroup in R generated by the elements ϕ(y) taken for all y ∈ Λ).
If ϕΛ is the restriction of ϕ to Λ and L(Λ) is the set of lines from L

contained in Λ, then we have the following

Lemma 2.1.2 (R[Λ], ϕΛ) is a representation of (Λ, L(Λ)). 2

If the representation (R,ϕ) in the above lemma is G-admissible for an
automorphism group G of S, H is the stabilizer of Λ and H is the action
induced by H on Λ, then clearly (Λ, L(Λ)) is H-admissible.

Now let ∆ be a subset of Λ and suppose that R[∆] is normal in R[Λ]
(this is always the case when R is abelian). Then (R[Λ]/R[∆], χ) is a
representation of (Λ, L(Λ)) (where χ is the composition of ϕΛ and the
homomorphism of R[Λ] onto R[Λ]/R[∆]). The following observation is
rather useful.

Lemma 2.1.3 Let {p, q, r} be a line in L(Λ) such that p ∈ ∆. Then χ(q) =
χ(r). 2

The following result is quite obvious.

Lemma 2.1.4 Let (Ri, ϕi) be representations of S = (Π, L) for 1 ≤ i ≤ m.
Let

R = R1 × ...×Rm = {(r1, ..., rm) | ri ∈ Ri}

be the direct product of the representation groups Ri and ϕ be the map-
ping which sends p ∈ Π onto (ϕ1(p), ..., ϕm(p)) ∈ R. Then (Imϕ,ϕ) is a
representation of S. 2

The representation (Imϕ,ϕ) in the above lemma will be called the prod-
uct of the representations (Ri, ϕi) and we will write

(Imϕ,ϕ) = (R1, ϕ1)× ...× (Rm, ϕm).

Notice that the representation group of the product is not always the direct
product of the Ri but rather a sub-direct product.

For the remainder of the chapter S = (Π, L) is a point-line incidence
system with three points on every line and this system might or might not
be a truncation of a geometry of rank 3 or more.
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2.2 Collinearity graph

Let Γ be the collinearity graph of the point-line incidence system S = (Π, L)
which is a graph on the set of points in which two points are adjacent if
they are incident to a common line. For x, y ∈ Π by dΓ(x, y) we denote
the distance from x to y in the natural metric of Γ. Notice that the set of
points incident to a line is a triangle. For a vertex x of Γ, as usual Γi(x)
denotes the set of vertices at distance i from x in Γ and Γ(x) = Γ1(x).

For a vertex x of Γ and 0 ≤ i ≤ d put

Ri(x) = 〈ϕ(y) | dΓ(x, y) ≤ i〉,

or equivalently

Ri(x) = R[{x} ∪ Γ1(x) ∪ ... ∪ Γi(x)].

If for some i ≥ 1 the subgroup Ri−1(x) is a normal subgroup in Ri(x) (of
course this is always the case when R is abelian), we put

Ri(x) = Ri(x)/Ri−1(x).

Notice that R0(x) is in the centre of R1(x), so that R1(x) is always defined.
We introduce a certain invariant of Γ which will be used to obtain upper

bounds on dimensions of V (S). Let Σi(x) be a graph on the set Γi(x) in
which two vertices {u, v} are adjacent if there is a line containing u, v and
intersecting Γi−1(x) (here 1 ≤ i ≤ d where d is the diameter of Γ). Notice
that Σi(x) is a subgraph of Γ but not necessarily the subgraph induced
by Γi(x) (the latter subgraph might contain more edges than Σi(x)). Let
c(Σi(x)) be the number of connected components of Σi(x) and put

β(Γ) = 1 + min
x∈Π

(
d∑
i=1

c(Σi(x))

)
.

Notice that in general β(Γ) depends not only on the graph Γ but also on
the line set L, but if S = (Π, L) is flag-transitive, then c(Σi(x)) = c(Σi(y))
for any x, y ∈ Π.

Lemma 2.2.1 dim V (S) ≤ β(Γ).

Proof. Let (W,ϕ) be an abelian representation of S and x ∈ Γ. Then

dim W = 1 +

d∑
i=1

dim W i(x).

Let u, v ∈ Γi(x) be adjacent in Σi(x) and l be a line containing u, v and
intersecting Γi−1(x) in a point w, say. Then by (2.1.3)

〈ϕ(u),Wi−1(x)〉 = 〈ϕ(v),Wi−1(x)〉.

If u1, u2, ..., um is a path in Σi(x) then by the above 〈ϕ(uj),Wi−1〉 is inde-
pendent on the choice of 1 ≤ j ≤ m. Hence all the points in a connected
component of Σi have the same image in W i(x) and the result follows. 2
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Lemma 2.2.2 Let C = (y0, y1, ..., ym = y0) be a cycle in the collinearity
graph Γ of S and suppose that zi, 0 ≤ i ≤ m − 1, are points such that
{yi, yi+1, zi} ∈ L. Then for every representation (R,ϕ) of S we have

ϕ(z0)ϕ(z1)...ϕ(zm−1) = 1.

Proof. Since S is of GF (2)-type, ϕ(x)ϕ(x) = 1 for every point x, hence

ϕ(y0)ϕ(y1)ϕ(y1)...ϕ(ym−1)ϕ(ym−1)ϕ(y0) = 1.

On the other hand, since (R,ϕ) is a representation, we have ϕ(zi) =
ϕ(yi)ϕ(yi+1) which immediately gives the result. 2

Lemma 2.2.3 Suppose that R1(x) = R1(x)/R0(x) is abelian for every x ∈
Π. If u, v ∈ Π with dΓ(u, v) ≤ 2 one of the following holds:

(i) [ϕ(u), ϕ(v)] = 1;

(ii) dΓ(u, v) = 2, Γ(u) ∩ Γ(v) consists of a unique vertex w, say, and
[ϕ(u), ϕ(v)] = ϕ(w).

In particular, ϕ(u) and ϕ(v) commute if dΓ(u, v) = 1 or if dΓ(u, v) = 2 and
there are more than one path of length 2 in Γ joining u and v.

Proof. If u and v are adjacent then ϕ(u)ϕ(v) = ϕ(t) where {u, v, t} is
a line and hence [ϕ(u), ϕ(v)] = 1. If R1(x) is abelian for every x ∈ Π then
again ϕ(u) and ϕ(v) commute. If R1(x) is non-abelian, then its commutator
is R0(x) and the latter contains at most one non-identity element, which is
ϕ(x). Now the result is immediate. 2

2.3 Geometrical hyperplanes

A geometrical hyperplane H in S is a proper subset of points such that
every line is either entirely contained in H or intersects it in exactly one
point. The complement of H is the subgraph in the collinearity graph of S
induced by Π \H. The following result is quite obvious.

Lemma 2.3.1 Let χ : S̃ → S be a covering of geometries and H be a
geometrical hyperplane in S. Then χ−1(H) is a geometrical hyperplane in

S̃. 2

The following result shows that in the case when every line is incident to
exactly 3 points the geometrical hyperplanes correspond to vectors in the
dual of the universal representation module of the geometry. In particular,
the universal representation module of a point-line incidence system S with
3 points per line is trivial if and only if S has no geometrical hyperplanes.

Lemma 2.3.2 Let (V, ϕa) be the universal abelian representation of S. Let
χ be a mapping from the set of subspaces of codimension 1 in V into the
set of subsets of Π such that for a subspace W of codimension 1 we have

χ(W ) = {x ∈ Π | ϕa(x) ∈W}.

Then χ is a bijection onto the set of geometrical hyperplanes in S.
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Proof. For a subspace W of codimension 1 in V consider the quotient
V/W (which is a group of order 2) and the mapping

ϕW : p 7→ ϕa(p)W.

Then clearly (V/W,ϕW ) is a representation of S. Since V/W is of order 2,
for every line from L either for all or for exactly one of its points the image
under ϕW is 0 (equivalently the image under ϕa is contained in W ). Hence
χ(W ) is a geometrical hyperplane. On the other hand, if H is a geometrical
hyperplane in S we take Z(H) to be a group of order 2 and define ϕH to
be the mapping which sends p ∈ H onto 0 and p ∈ Π \ H onto 1 (the
non-zero element in Z(H)). Then it is immediate that (Z(H), ϕH) is an
abelian representation. Since (V, ϕa) is universal there is a homomorphism
ψ of V onto Z(H) such that ϕH is the composition of ϕa and ψ and the
kernel of ψ is the codimension 1 subspace in V , corresponding to H. 2

By the above lemma the universal abelian representation can be re-
constructed from the geometrical hyperplanes in the following way. Let
H1, ...,Hm be the set of geometrical hyperplanes in S, Z(Hi) = {0, 1}
be a group of order 2 and ϕHi

: Π → Z(Hi) be the mapping, such that
ϕHi

(p) = 0 if p ∈ Hi and ϕHi
(p) = 1 otherwise.

Lemma 2.3.3 The universal abelian representation (Va, ϕa) of S is iso-
morphic to the product of the representations (Z(Hi), ϕHi

) taken for all the
geometrical hyperplanes Hi in S.

Proof. Let V1, ..., Vm be the set of all subgroups of index 2 in Va and
suppose that χ(Vi) = Hi in terms of (2.3.2). Define a mapping ψ from V
into the direct product of Z(H1)×...×Z(Hm) by ψ(v) = (α1(v), ..., αm(v)),
where αi(v) = 0 if v ∈ Vi and αi(v) = 1 otherwise. It is easy to see that
ψ is a representation homomorphism of (Va, ϕa) onto the product of the
(Z(Hi), ϕHi

), which proves the universality of the product. 2

Corollary 2.3.4 If (V, ϕ) is a representation of S such that V is generated
by the images under ϕ of the points from a geometrical hyperplane H in
S. Then the product (V, ϕ)× (Z(H), ϕH) possesses a proper representation
homomorphism onto (V, ϕ), in particular the latter is not universal. 2

The next lemma generalizes this observation for the case of non-abelian
representations.

Lemma 2.3.5 Let (R,ϕ) be a representation of S. Suppose that H is
a geometrical hyperplane in S such that the elements ϕ(x) taken for all
x ∈ H generate the whole R. Then the representation group of the product
(R,ϕ)× (Z(H), ϕH) is the direct product of R and the group Z(H) of order
2. 2

The following result gives us a sufficient criterion for the universal rep-
resentation group to be infinite.
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Lemma 2.3.6 Suppose that H is a geometrical hyperplane in S whose com-
plement consists of m connected components. Then R(S) possesses a ho-
momorphism onto a group, freely generated by m involutions. In particular,
R(S) is infinite if m ≥ 2.

Proof. Let A1, ..., Am be the connected components of the complement
of H. Let D be a group freely generated by m involutions a1, ..., am. Let ψ
be the mapping from Π into D, such that ψ(x) = ai if x ∈ Ai, 1 ≤ i ≤ m,
and ψ(x) is the identity element of D if x ∈ H. It is easy to check that
(D,ψ) is a representation of S and the result follows. 2

Lemma 2.3.7 Suppose that for every point x ∈ Π there is a partition
Π = A(x) ∪ B(x) of Π into disjoint subsets A(x) and B(x) such that the
following conditions are satisfied:

(i) the graph Ξ on Π with the edge set E(Ξ) = {(x, y) | y ∈ B(x)} is
connected and undirected (the latter means that x ∈ B(y) whenever
y ∈ B(x));

(ii) for every x ∈ Π the graph Σx on B(x) with the edge set E(Σx) =
{{u, v} | {u, v, w} ∈ L for some w ∈ A(x)} is connected.

Suppose that (R,ϕ) is a representation of S such that [ϕ(x), ϕ(y)] = 1
whenever y ∈ A(x). Then the commutator subgroup of R has order at most
2.

Proof. For x, y ∈ Π let cxy = [ϕ(x), ϕ(y)] and Cxy be the subgroup
in R generated by cxy. Then by the assumption cxy = 1 if y ∈ A(x). Let
{u, v, w} be a line in L such that {u, v} is an edge in Σx and w ∈ A(x). Since
ϕ(u) = ϕ(w)ϕ(v) by definition of the representation and [ϕ(x), ϕ(w)] = 1,
we have

cxu = [ϕ(x), ϕ(u)] = [ϕ(x), ϕ(w)ϕ(v)] =

[ϕ(x), ϕ(w)]ϕ(v)[ϕ(x), ϕ(v)] = [ϕ(x), ϕ(v)] = cxv.

This calculation together with the connectivity of Σx implies that Cxu is
independent on the particular choice of u ∈ B(x) and will be denoted by
Cx. Since

cxy = [ϕ(x), ϕ(y)] = [ϕ(y), ϕ(x)]−1 = c−1
yx ,

we also have Cxy = Cyx, which means that Cx = Cy whenever y ∈ B(x),
i.e., whenever x and y are adjacent in the graph Ξ as in (i). Since Ξ is
undirected and connected, Cx is independent on the choice of x and will be
denoted by C. By the definition ϕ(x)−1cxyϕ(x) = c−1

xy which means that C
is inverted by the element ϕ(x) for every x ∈ Π. Now if {x, y, z} ∈ L then
ϕ(x) = ϕ(y)ϕ(z) and hence ϕ(x) also centralizes C which means that the
order of C is at most 2. Since R is generated by the elements ϕ(x), taken
for all x ∈ Π we also observe that C is in the centre of R, in particular, it
is normal in R. Since the images of ϕ(x) and ϕ(y) in R/C commute for all
x, y ∈ Π we conclude that the order of the commutator subgroup of R is at
most the order of C and the result follows. 2
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Suppose that the conditions in (2.3.7) are satisfied and R is non-abelian.
Then C = R′ is of order 2 generated by an element c, say. One can see
from the proof of (2.3.7) that in the considered situation [ϕ(x), ϕ(y)] = c
whenever y ∈ B(x) and we have the following

Corollary 2.3.8 Suppose that the conditions in (2.3.7) are satisfied and R
is non-abelian. Let (V, ψ) be the abelian representation where V = R/R′

and ψ(x) = ϕ(x)R′/R′. Then the mapping χ : V × V → GF (2) such that
χ(ϕ(x), ϕ(y)) = 0 if y ∈ A(x) and χ(ϕ(x), ϕ(y)) = 1 if y ∈ B(x) is a non-
zero bilinear symplectic form. In particular, A(x) is a hyperplane for every
x ∈ Π. 2

Corollary 2.3.9 Suppose that in the conditions of (2.3.8) the representa-
tion (R,ϕ) is G-admissible for a group G (which is the case, for instance, if
(R,ϕ) is the universal representation and G = AutS). Then the mapping
χ is G-invariant. 2

2.4 Odd order subgroups

Let G be a flag-transitive automorphism group of S = (Π, L) and suppose
that E is a normal subgroup in G of odd order. Let S = (Π, L) be the
quotient of S with respect to E (so that G commutes with the covering
S → S). Let (V, ϕ) be the universal abelian representation of S. Let
V z = CV (E) and V c = [V,E] so that V = V z ⊕ V c and let ϕz and ϕc be
the mappings of the point set of S into V z and V c, respectively, such that
ϕ(x) = ϕz(x) + ϕc(x) for every x ∈ Π.

Lemma 2.4.1 In the above notation (V z, ϕz) is the universal abelian rep-
resentation of S.

Proof. Since the mapping ϕz is constant on every E-orbit on the set
of points of S, it is easy to see that (V z, ϕz) is a representation of S. Let
(W,ψ) be the universal representation of S and χ be the natural morphism
of S onto S. Then it is easy to see that (W,ψχ) is a representation of
S and in the induced action of G on W the subgroup E is in the kernel.
Since V is the universal representation module of S, W is a quotient of V .
Furthermore, if U is the kernel of the homomorphism of V onto W then U
contains V c. This shows that U = V c and W ∼= V z. 2

Lemma 2.4.2 Let V1 and V2 be GF (2)-vector spaces and S = (Π, L) be

the point-line incidence system such that Π = V #
1 ×V

#
2 and whose lines are

the triples {(a, x), (b, x), (a+ b, x)} and the triples {(a, x), (a, y), (a, x+ y)},
for all a, b ∈ V #

1 , x, y ∈ V #
2 . Then the universal representation group of S

is abelian, isomorphic to the tensor product V1 ⊗ V2.

Proof. Let (R,ϕ) be the universal representation of S. Then the follow-

ing sequence of equalities for a, b ∈ V #
1 , x, y ∈ V #

2 imply the commutativity
of R:

ϕ(a, x)ϕ(b, y) = ϕ(a+ b, x)ϕ(b, x)ϕ(b, y) =
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ϕ(a+ b, x)ϕ(b, x+ y) = ϕ(a+ b, y)ϕ(a+ b, x+ y)ϕ(b, x+ y) =

ϕ(b, y)ϕ(a, y)ϕ(a, x+ y) = ϕ(b, y)ϕ(a, x).

The structure of R now follows from the definition of the tensor product. 2

Suppose now that S = (Π, L) possesses an automorphism group E of
order 3 which acts fixed-point freely on the set Π of points. Then every
orbit of E on Π is of size 3 and we can adjoin these orbits to the set L of
lines. The point-line incidence system obtained in this way will be called
the enrichment of S associated with E. We will denote this enriched system
by S∗.

Lemma 2.4.3 In terms introduced before (2.4.1) if |E| = 3 then (V c, ϕc)
is the universal abelian representation of S∗.

Proof. Since E acts fixed-point freely on V c, ϕc(x)+ϕc(xz)+ϕc(xz
2

) =
0 for any x ∈ Π and a generator z of E.

Lemma 2.4.4 Let S∗ be the enrichment of S associated with a fixed-point
free subgroup E of order 3 and (R∗, ϕ) be a representation of S∗. Let x ∈ Π
and y be an image under E of a point collinear to x. Then [ϕ(x), ϕ(y)] = 1.

Proof. Let x0
0, x

0
1, x

0
2 be the images of x under E, x1

0, x
1
1, x

1
2 be the

images of y under E. We assume that for 0 ≤ i ≤ 2 the points x0
i and x1

i

are collinear and that x2
i is the third point on the corresponding line. Let

Φ = {xji | 0 ≤ i ≤ 2, 0 ≤ j ≤ 2} and Λ be the set of lines of S∗ contained in
Φ. Then the conditions of (2.4.2) are satisfied for (Φ,Λ) with

V1 = 〈ϕ(x0
i ) | 0 ≤ i ≤ 2〉, V2 = 〈ϕ(xj0) | 0 ≤ j ≤ 2〉

and hence the elements ϕ(z) taken for all z ∈ Φ generate in R∗ an abelian
subgroup of order at most 16. 2

The technique presented in the remainder of the section was introduced
in [Sh93] to determine the universal representation modules of the geome-
tries G(3[n2 ]2 · S2n(2)) for n ≥ 3 and G(323 · Co2).

In terms introduced at the beginning of the section assume that E is
an elementary abelian 3-group normal in G so that E is a GF (3)-module
for G = G/E and that V c 6= 0. Since the characteristic of V c is 2, by
Maschke’s theorem V c is a direct sum of irreducible E-modules. Let U be
one of these irreducibles. Since V c = [V,E], U is non-trivial, hence it is
2-dimensional and E induces on U an action of order 3. The kernel of this
action is an index 3 subgroup in E. A subgroup Y of index 3 in E is said
to be represented if V cY := CV c(Y ) 6= 0. Let Ξ be the set of all represented
subgroups (of index 3) in E. Then we have a decomposition

V c =
⊕
Y ∈Ξ

V cY ,

which is clearly G-invariant with respect to the action (V cY )g = V cY g for
g ∈ G.
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Let x ∈ Π be a point and let E(x) = E ∩G(x) be the stabilizer of x in
E. Since E is abelian, E(x) depends only on the image x of x in Π, so we
can put E(x) = E(x). Thus for every point x we obtain a subgroup E(x) in

E normalized by G(x). Put Ê = E/E(x) and adopt the hat convention for
subgroups in E. We will assume that the following condition is satisfied.

(M) The elementary abelian 3-group Ê is generated by a G(x)-invariant
set B = {Bi | i ∈ I} of distinct subgroups of order 3. There is
a structure of a connected graph Σ on the index set I such that
whenever {i, j} ⊂ I is an edge of Σ and Bij := 〈Bi, Bj〉, there is a
line {x, u, w} ∈ L containing x such that the intersections of Bij with

Ê(u) and Ê(w) together with Bi and Bj form the complete set of
subgroups of order 3 in the group Bij (which is elementary abelian of
order 9).

For a point x ∈ Π and a represented subgroup Y ∈ Ξ let vx,Y be the
projection of ϕc(x) into V cY and put

S(x) = {Y ∈ Ξ | vx,Y 6= 0} = {x ∈ Π | vx,Y = 0}.

(notice that S(x) indeed does not depend on the particular choice of the
preimage x of x in Π). For a represented subgroup Y ∈ Ξ put

ΩY = {x ∈ Π | Y 6∈ S(x)}.

Notice that if x 6∈ ΩY then E(x) ≤ Y .

Proposition 2.4.5 If (M) holds then ΩY is a geometrical hyperplane in
S for every Y ∈ Ξ.

Proof. Choose Y ∈ Ξ. Since V c is generated by the vectors ϕc(y) taken
for all y ∈ Π, there is x ∈ Π such that vx,Y 6= 0 and hence there is x ∈ Π
outside ΩY and so the latter is a proper subset of Π. If l = {x, u, w} ∈ L
then since (V c, ϕc) is a representation, vx,Y + vu,Y + vw,Y = 0 which shows
that every line from L intersects ΩY in 0, 1 or 3 points and all we have to
show is that the intersection is never empty.

Suppose to the contrary that both u and w are not in ΩY (where

{x, u, w} is a line in L). Consider Ê = E/E(x). Since x 6∈ ΩY , we have

E(x) ≤ Y which shows that the image Ŷ of Y in Ê is a proper hyperplane

in Ê. Consider the generating set B from (M). By the flag-transitivity,
G(x) acts transitively on the set of lines passing through x. This together
with (M) implies that there is an edge {i, j} of Σ such that Bij is generated
by its intersections with E(u) and E(w). Since both u and w are not in ΩY
we have Bi, Bj ≤ Ŷ . Let k ∈ I \ {j} be adjacent to i in Σ and {x, u′, w′}
be a line in L such that the intersections of Bik with Ê(u′) and Ê(v′) are
of order 3 distinct from each other and also from Bi and Bk. Since at least
one of u′ and w′ is not contained in ΩY , the corresponding intersection is
contained in Ŷ , since we know already that Bi ≤ Ŷ this gives Bk ≤ Ŷ .
Finally, since Σ is connected we obtain Ŷ = Ê, a contradiction. 2
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The above proof also suggests how one can reconstruct Y from ΩY . For
a geometrical hyperplane Ω in S put

Y (Ω) = 〈E(x) | x 6∈ Ω〉.

Lemma 2.4.6 Suppose that (M) holds and Ω is a geometrical hyperplane
in S. Then

(i) the index of Y (Ω) in E is at most 3;

(ii) if Y ∈ Ξ is represented, then Y = Y (ΩY ).

Proof. Let x ∈ Π \Ω. Then by the definition E(x) ≤ Y (Ω). Consider

Ê = E/E(x). Let {i, j} be an edge of Σ. Then there is a line {x, u, w} such

that among the four subgroups in Bij one is contained in Ê(u) and one is

in Ê(w). Since one of the points u and w is contained in Ω, a subgroup of

order 3 in Bij is contained in Ŷ (Ω). Hence the images in Ê/Ŷ (Ω) of Bi
and Bj coincide. Since {i, j} was an arbitrary edge of Σ and the latter is
connected, we obtain (i). In the proof of (2.4.5) we observed that E(x) ≤ Y
whenever x 6∈ ΩY . Hence (ii) follows from (i) and (2.4.5). 2

A geometrical hyperplane Ω in S is said to be acceptable if

Y (Ω) := 〈E(x) | x 6∈ Ω〉 6= E.

By (2.4.6) every ΩY is acceptable. Thus the number of represented sub-
groups in E (the cardinality of Ξ) is at most the number of acceptable
hyperplanes in S.

Now in order to bound the dimension of V c it is sufficient to bound the
dimension of V cY for a represented subgroup Y in E. Notice that a line
which is not in ΩY has exactly two of its points outside ΩY . Hence all such
lines define in a natural way a structure of a graph on the complement of
ΩY . Let nY be the number of connected components of this graph.

Lemma 2.4.7 Suppose that (M) holds. Then dim V cY ≤ 2nY .

Proof. Let T be the complement of ΩY . It is clear that V cY is spanned
by the vectors vx,Y taken for all points x ∈ T . For a fixed x its image
x in S is the E-orbit containing x. Hence the vectors vu,Y taken for all
u ∈ x generate a 2-dimensional irreducible E-submodule (if fact any E-
orbit on the non-zero elements of V cY spans a 2-dimensional irreducible E-
submodule. Let x, u be collinear points in T . Then by (2.4.5) there exists
a line l = {x, u, w} in S such that w ∈ ΩY . Choose a line l = {x, u, w} of
S which is a preimage of l. Since

vx,Y + vu,Y + vw,Y = 0 and vw,Y = 0,

we obtain vx,Y = vu,Y . Hence the points in every connected component of
T correspond to the same 2-dimensional E-submodule of V cY and the result
follows. 2
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By (2.3.6) the existence of a geometrical hyperplane whose complement
induces a disconnected subgraph in the collinearity graph forces the univer-
sal representation group to be infinite. In view of (2.4.7) this observation
implies the following.

Corollary 2.4.8 Suppose that (M) holds and the universal representation
group of S is finite. Then dim V cY ≤ 2. 2

2.5 Cayley graphs

In some circumstances calculation of the universal representation of a point-
line incidence system can be reduced to calculation of the universal cover
of a certain Cayley graph with respect to a class of triangles.

Let S = (Π, L) be a point-line incidence system with 3 points on a line,
(Q,ψ) be a representation of S and suppose that ψ is injective. Then

ψ(Π) := {ψ(x) | x ∈ Π}

is a generating set of Q and we can consider the Cayley graph Θ :=
Cay(Q,ψ(Π)) of Q with respect to this generating set. This means that the
vertices of Θ are the elements of Q and such two elements q and p are ad-
jacent if qp−1 ∈ ψ(Π). Since ψ(Π) consists of involutions, Θ is undirected.
If e is the identity element of Q (considered as a vertex of Θ) then ψ estab-
lishes a bijection of Π onto Θ(e) = ψ(Π). A triangle T = {p, q, r} in Θ will
be called geometrical if {pq−1, qr−1, rp−1} is a line from L. If {x, y, z} ∈ L
then {e, ψ(x), ψ(y)} is a geometrical triangle and all geometrical triangles
containing e are of this form.

Let (Q̃, ψ̃) be another representation of S such that there is a repre-

sentation homomorphism χ : Q̃ → Q. Since χ is a representation homo-
morphism, it maps vertices adjacent in Θ̃ := Cay(Q̃, ψ̃(Π)) onto vertices

adjacent in Θ. Since in addition the valencies of both Θ̃ and Θ are equal
to |Π|, χ induces a covering of Θ̃ onto Θ (denoted by the same letter χ).
Furthermore one can easily see that a connected component of the preimage
under χ of a geometrical triangle in Θ is a geometrical triangle in Θ̃ which
shows that the geometrical triangles in Θ are contractible with respect to
χ.

Lemma 2.5.1 In the above terms let (R,ϕ) be the universal representation
of S and σ : R→ Q be the corresponding homomorphism of representations.
Then the induced covering

σ : Cay(R,ϕ(Π))→ Θ

is universal among the covers with respect to which the geometrical triangles
are contractible.

Proof. Let δ : Θ̂ → Θ be the universal cover with respect to the
geometrical triangles in Θ. By the universality property the group of deck
transformations acts regularly on every fiber and since Q acts regularly on
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Θ, the group Q̂ of all liftings of elements of Q to automorphisms of Θ̂ acts
regularly on the vertex set of Θ̂. This means that Θ̂ is a Cayley graph of Q̂.
Let ê be a preimage of e in Θ̂. Then a vertex f̂ ∈ Θ̂ can be identified with
the unique element in Q̂ which maps ê onto f̂ and under this identification δ
is a homomorphism of Q̂ onto Q. Since δ is a covering of graphs, it induces
a bijection β of Θ̂(ê) onto Θ(e) and since ψ is a bijection of Π onto Θ(e)

the mapping ϕ := β−1ψ is a bijection of Π onto Θ̂(ê). We claim that ϕ(x)
is an involution for every x ∈ Π. The claim follows from the fact that δ is a
covering of graphs, δ(ϕ(x)) = ψ(x) is an involution and Q̂ acts regularly on

Θ̂. Let {x, y, z} ∈ L. Since the geometrical triangles are contractible with

respect to δ, ϕ(x) and ϕ(y) are adjacent in Θ̂ which means that the element
α := ϕ(x)ϕ(y) belongs to the set ϕ(Π) of generators. Since δ(α) = ψ(z) we

have α = ϕ(z) and hence Q̂ is a representation group of S. The universality

of δ implies that Q̂ is the universal representation group, i.e., Q̂ = R. 2

2.6 Higher ranks

Let S = (Π, L) be as above, (R,ϕ) be a representation of S, Λ be a subset
of Π and L(λ) be the set of lines contained in Λ. Let ϕ[Λ] be the subgroup
in R generated by the elements ϕ(x) taken for all x ∈ Λ and ϕΛ be the
restriction of ϕ to Λ. The following result is quite obvious.

Lemma 2.6.1 The pair (ϕ[Λ], ϕΛ) is a representation of (Λ, L(Λ)). 2

Suppose now that S is the point-line incidence system of a geometry G
of rank n ≥ 3 with the diagram of the form

2
◦

2
◦ X

q3
◦ · · ·

so that (R,ϕ) is also a representation of G. For an element u ∈ G define
ϕ∗(u) to be the subgroup in R generated by the elements ϕ(x) taken for
all points x incident to u. In this way for a point x the element ϕ(x) is
identified with the subgroup ϕ∗(x) in R it generates. For u as above let ϕu
be restriction of ϕ to the set of points in G incident to u. Then by (2.6.1)
(ϕ∗(u), ϕu) is a representation of the point-line incidence system with the
point-set Π ∩ resG(u) and whose lines are those of G contained in this set.
In particular if u is a plane of G then (ϕ∗(u), ϕu) is a representation of
the projective plane pg(2, 2) of order 2 formed by the points and lines of G
incident to u, in particular ϕ∗(u) is abelian of order at most 23.

Let x be a point in G and Sx = (Πx, Lx) be the point-line system of
resG(x), which means that Πx and Lx are the lines and planes in G incident
to x.

Lemma 2.6.2 In the above terms let (R,ϕ) be a representation of G, x be
a point of G, R1(x) be the subgroup in R generated by the elements ϕ(y)
taken for all points y collinear to x, R1(x) = R1(x)/ϕ(x). Let

ϕx : u 7→ ϕ∗(u)/ϕ∗(x)
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for u ∈ Πx. Then (R1(x), ϕx) is a representation of resG(x). Furthermore,
let G be an automorphism group of G such that (R,ϕ) is G-admissible and
let G(x) be the action which G(x) induces on resG(x), then (R1(x), ϕx) is
G(x)-admissible.

Proof. For y ∈ Πx the order of ϕ∗(y)/ϕ∗(x) is at most 2 and hence the
condition (R2) is satisfied. Let π ∈ Lx (a plane in G containing x), l1, l2, l3
be the lines in G incident to both x and π and yi ∈ li \ {x} for 1 ≤ i ≤ 3 be
such points that {y1, y2, y3} is a line of G, then ϕ(y1)ϕ(y2)ϕ(y3) = 1 which
implies (R3). 2

The above result possesses the following reformulation in terms of the
collinearity graph Γ of G.

Lemma 2.6.3 Let (R,ϕ) be a representation of G which is G-admissible
for an automorphism group G of G, let Γ be the collinearity graph of G, let
x be a point and G(x) be the action induced by G(x) on resG(x),

R1(x) = 〈ϕ(y) | y ∈ Γ(x)〉,

R0(x) = 〈ϕ(x)〉, R1(x) = R1(x)/R0(x). Then R1(x) is a G(x)-admissible
representation group of resG(x). 2

Let us repeat the definition of the mapping ϕx which turns R1(x) into
a representation group. A point of resG(x) is a line l in G containing x, say
l = {x, y1, y2}, then

ϕx : l 7→ ϕ(y1)R0(x) = ϕ(y2)R0(x).

Suppose that G belongs to a string diagram and the residue of an element
of type n (the rightmost on the diagram) is the projective space pg(n−1, 2)
of rank n−1 over GF (2) (this is the case when G is a P - or T -geometry) and
G is a flag-transitive automorphism group of G. If (R,ϕ) is a non-trivial
G-admissible representation (i.e., R 6= 1) then ϕ(u) is abelian of order 2i

whenever u is a an element of type i in G.

2.7 c-extensions

Let G be a geometry of rank n ≥ 2 with diagram of the form

2
◦

2
◦ · · ·

2
◦

2
◦ X

q
◦,

(in particular G can be P - or T -geometry) and G be a flag-transitive au-
tomorphism group of G. Let (R,ϕ) be a G-admissible representation of G.
Suppose that the representation is non-trivial in the sense that the order
of R is not 1. Then it follows from the flag-transitivity that ϕ maps the
point-set of G into the set of involutions in R. Let us extend ϕ to a mapping
ϕ∗ from the element-set of G into the set of subgroups in R as we did in
Section 2.6 (i.e., for x ∈ G define ϕ∗(x) to be the subgroup generated by
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the involutions ϕ(p) taken for all points p incident to x.) Since (R,ϕ) is
G-admissible, for an element x of type 1 < i ≤ n in G the pair (ϕ∗, ϕx) is
a G(x)-admissible representation of res−G (x), where ϕx is the restriction of

ϕ to the set of points incident to x. Since res−G (x) is the GF (2)-projective
geometry of rank i − 1, it follows from (3.1.2) that ϕ∗(x) is elementary
abelian of order 2i.

Definition 2.7.1 In the above terms the representation (R,ϕ) is separable
if ϕ∗(x) = ϕ∗(y) implies x = y for all x, y ∈ G.

Suppose that the representation (R,ϕ) is separable. Then we can iden-
tify every element x ∈ G with its image ϕ∗(x) so that the incidence relation
is via inclusion. Define a geometry AF(G, R) of rank n+1 by the following
rule. The elements of type 1 are the elements of R (also considered as the
right cosets of the identity subgroup) and for j > 1 the elements of type
j are all the right cosets of the subgroups ϕ∗(x) for all elements x of type
j − 1 in G; the incidence relation is via inclusion.

Proposition 2.7.2 The following assertions hold:

(i) AF(G, R) is a geometry with the diagram

1
◦ c

2
◦

2
◦ · · ·

2
◦

2
◦ X

q
◦;

(ii) the residue of an element of type 1 in AF(G, R) is isomorphic to G;

(iii) the semidirect product H := R : G with respect to the natural action
is a flag-transitive automorphism group of AF(G, R);

(iv) if (R̃, ϕ̃) is another representation of G and

χ : R̃→ R

is a representation homomorphism, then χ induces a 2-covering

ψ : AF(G, R̃)→ AF(G, R).

Proof. Let α be the element of type 1 in H = AF(G, R) which is the
identity element of R. Then the elements of H incident to α are exactly the
subgroups ϕ(x)∗ representing the elements of G. Since (R,ϕ) is separable,
this shows that resH(α) ∼= G. Clearly R : G (and even R) acts transitively
on the set of elements of type 1 in H and hence (ii) follows. It follows from
the definition that if Xi and Xj are incident elements in H of type i and
j respectively with i < j, then Xi ⊂ Xj . This shows that every maximal
flag contains an element of type 1 and also that H belongs to a string
diagram. Let γ be an element of type 3 in H (without loss of generality we
assume that γ = ϕ∗(l) where l is a line in G.) Since (R,ϕ) is separable, γ
is elementary abelian of order 4. Now the elements of type 1 and 2 in H
incident to γ are the elements of ϕ∗(l) and the cosets of the subgroups of
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order 2 in ϕ∗(l), respectively. Clearly this is the geometry with the diagram

1
◦ c

2
◦, so (i) follows. (iii) follows directly from the definition of H. For

a homomorphism χ as in (iv) define a morphism ψ of H̃ = AF(G, R̃) onto
H by

ψ(ϕ̃∗(x) r̃) = ϕ∗(x)χ(r̃),

where x ∈ G and r̃ ∈ R̃. Then it is easy to see from the above that ψ is a
2-covering (furthermore ψ is an isomorphism when restricted to the residue
of an element of type 1). 2

A geometry with the diagram as in (2.7.2 (i)) in which the residue of an
element of type 1 is isomorphic to G will be called a c-extension of G; the
geometry AF(G, R) will be said to be an affine c-extension of G.

Proposition 2.7.3 Let G be a geometry with the diagram

2
◦

2
◦ · · ·

2
◦

2
◦ X

q
◦,

such that

(i) the number of lines passing through a point is odd.

Let H be a c-extension of G and H be a flag-transitive automorphism group
of H such that

(ii) any two elements of type 1 in H are incident to at most one common
element of type 2;

(iii) H contains a normal subgroup R which acts regularly on the set of
elements of type 1 in H;

(iv) if {x1, y1} is a pair of elements of type 1 in H incident to an element
of type 2 then y1 is the only element of type 1 incident with x1 to a
common element of type 2, which is stabilized by H(x1) ∩H(y1).

Then R is a representation group of G. If in addition R is separable then
H ∼= AF(G, R).

Proof. Let α be an element of type 1 in H. Then by (ii) there is a
bijection ν of the point-set of G onto the set of elements of type 1 in H
incident with α to a common element of type 2. For a point p of G let rp
be the unique element in R which maps α onto ν(p).

Claim 1: rp is an involution.

It is clear that H(α)∩H(ν(p)) centralizes rp and hence it fixes elemen-
twise the orbit of α under rp. By (iv) this means that the image of α under
(rp)

−1 must be ν(p). Since rp acts regularly on the set of elements of type
1 in H, the claim follows.

Let β denote the unique element of type 2 incident to both α and ν(p).

Claim 2: rp fixes res+
H(β) elementwise.
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By Claim 1 rp is an involution which commutes with

H(β) = 〈H(α) ∩H(ν(p)), rp〉,

while H(β) acts transitively on the set Ξ of elements of type 3 in H incident
to β. By (i) the number of elements in Ξ is odd and hence the claim follows.

Claim 3: If {p, s, t} is the point-set of a line l in G, then rprsrt = 1.

Let γ be the element of type 3 in H which corresponds to l. Then by
Claim 2 〈rp, rs, rt〉 is contained in H(γ) and clearly it induces an elementary
abelian group of order 4 on the set of four elements of type 1 incident to γ.
Hence rprsrt fixes each of these four elements. By (iii) the claim follows.

Thus if put ϕ : p 7→ rp then by the above (R,ϕ) is a representation of
G. The last sentence in the statement of the proposition is rather clear. 2

In certain circumstances the geometry AF(G, R) possesses some further
automorphisms. Indeed, suppose that in terms of (2.7.2) the representation
group R is a covering group of G, i.e., that

G ∼= R := R/Z(R).

Let ν : r 7→ r be the natural homomorphism of R onto R. Then the
group H as in (2.7.2 (iii)) possesses a subgroup other than R which also acts
regularly on the point-set of AF(G, R). Indeed, in the considered situation
we have

H = {r1, r2) | r1, r2 ∈ R}
with the multiplication

(r1, r2) · (r′1, r′2) = (r1r2r
′
1r
−1
2 , r2r′2)

and it is straightforward to check that

S = {(r, r−1) | r ∈ R}

is a normal subgroup in H, isomorphic to R. Furthermore, S ∩R = Z(R),
[R,S] = 1 and RS = H. This shows that H is the central product of R and
S. Thus S acts regularly on the point-set of AF(G, R) and the geometry
can be described in terms of cosets of certain subgroups in S (compare
(2.7.3)). In particular the automorphism of H which swaps the two central
product factors R and S is an automorphism of AF(G, R) and we obtain
the following.

Lemma 2.7.4 In terms of (2.7.2) suppose that G ∼= R := R/Z(R). Then

Ĥ = (R ∗ R).2 (the central product of two copies of R extended by the
automorphism which swaps the central factors) is an automorphism group
of AF(G, R). 2

The situation in (2.7.4) occurs when G is isomorphic to G(J4), G(BM)
or G(M) and R is the universal representation group of G isomorphic to J4,
2 · BM or M , respectively. It is not difficult to show that in each of the
three cases Ĥ = (R ∗R).2 is the full automorphism group of AF(G, R).

The following results were established in [FW99] and [StW01].
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Proposition 2.7.5 Let G be a flag-transitive P -geometry of rank n, such
that either n = 3 and G = G(M22) or n ≥ 4 and every rank 3 residual
P -geometry in G is isomorphic to G(M22). Let H be a non-affine flag-
transitive, simply connected c-extension of G and H be the automorphism
group of H. Then one of the following holds:

(i) n = 3 and H ∼= 2 · U6(2).2;

(ii) n = 3 and H ∼= M24;

(iii) n = 4, G = G(M23) and H ∼= M24. 2

The geometryH in (2.7.5 (iii)) possess the following description in terms
of the S(5, 8, 24)-Steiner system (P,B) (where T is the set of trios) (cf.
Subsection 1.1 in [StW01]):

H1 = P,

H2 = {{p1, p2} | p1, p2 ∈ P},

H3 = {{p1, p2, p3, p4} | pi ∈ P, pi 6= pj for i 6= j},

H4 = {(B1, {B2, B3}) | {B1, B2, B3} ∈ T },

H5 = B.

Incidences between elements of type 1, 2 and 3 are by inclusion. An element
p ∈ H1 is incident to an element (B1, {B2, B3}) ∈ H4 if p ∈ B1 and to
B ∈ H5 if p 6∈ B. Elements x ∈ H2 ∪ H3 and y ∈ H4 ∪ H5 are incident if
all elements of x are incident to y. The elements of type 5 in resH(x) for
x = (B1, {B2, B3}) ∈ H4 are B2 and B3.

Proposition 2.7.6 Let G be a flag-transitive T -geometry of rank n such
that either n = 3 and G = G(M24) or n ≥ 4 and every rank 3 residual
T -geometry in G is isomorphic to G(M24). Then every flag-transitive c-
extension of G is affine. 2

2.8 Non-split extensions

In this subsection we show that certain extensions of a representation group
by a group of order 2 lead to larger representation groups. Notice that if
G is an automorphism group of a geometry G and (R,ϕ) is a G-admissible
representation of G then the action of G on the point set Π defines a ho-
momorphism of G into the automorphism group of R and if the action is
faithful and ϕ is injective, then the homomorphism is also injective.

Lemma 2.8.1 Let S = (Π, L) be a point-line incidence system with 3
points on a line, G be an automorphism group of S which acts transitively
on Π and on L and (R,ϕ) be a G-admissible representation of S. Let R̃ be
a group, possessing a homomorphism χ onto R with kernel K of order 2.
Let

Φ = {r ∈ R̃ | χ(r) = ϕ(x) for some x ∈ Π}

(so that |Φ| = 2|ϕ(Π)|). Suppose that the following conditions hold:
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(i) there is a subgroup G̃ in Aut R̃ which centralizes K and whose induced
action on R coincides with G;

(ii) G̃ has two orbits say Φ1 and Φ2 on Φ;

(iii) there are no G̃-invariant complements to K in R̃.

For i = 1, 2 let ϕi be the mapping of Π onto Φi such that ϕ(x) = χ(ϕi(x))

for every x ∈ Π. Then for exactly one i ∈ {1, 2} the pair (R̃, ϕi) is a
representation of S.

Proof. Let κ be the generator of K and for i = 1, 2 let ϕi be as
defined above. Then for every x ∈ Π we have ϕ2(x) = ϕ1(x)κ. Let l =
{x, y, z} be a line from L and πi(l) = ϕi(x)ϕi(y)ϕi(z). Since (R,ϕ) is a
representation of S and κ is the unique non-identity element in the kernel
of the homomorphism of R̃ onto R, πi(l) ∈ {1, κ} and π2(l) = π1(l)κ. Since

the action of G̃ (with K being the kernel) is transitive on the set of lines,

πi(l) is independent of the choice of l. Finally by (iii) Φi generates R̃ for
i = 1, 2 and the result follows. 2

Notice that the condition (ii) in (2.8.1) always holds when the stabilizer

in G̃ of a point from Π does not have subgroups of index 2. In view of
this observation (2.8.1) can be used for calculation of the first cohomology
groups of certain modules. First recall a standard result (cf. Section 17 in
[A86]).

Proposition 2.8.2 Let G be a group, V be a GF (2)-module for G and
V ∗ be the module dual to V . Let V u be the largest indecomposable ex-
tension of V by trivial submodules (i.e., such that [G,V u] ≤ V and
CV u(G) = 0) and V d be the largest indecomposable extension of a triv-
ial module by V (i.e., such that [V d, G] = V d and V d/CV d(G) ∼= V ). Then
dimV u/V = H1(G,V ) and dimCV d(G) = H1(G,V ∗), here H1(G,V ) is
the first cohomology group of the G-module V . 2

We illustrate the calculating method of the first cohomology by the
following example (for further examples see (8.2.7)).

Lemma 2.8.3 Let U = U6(2) and W be the 20-dimensional GF (2)-module
for U which is the exterior cube of the natural 6-dimensional module. Then
dimH1(U,W ) = 2.

Proof. Since W is self-dual by (2.8.2) dimH1(U,W ) is equal to the
dimension of the centre of the largest indecomposable extension of trivial
modules by W . By (3.7.7) W is a representation module of the dual polar
space D = D4(3) of U and by (3.7.5) the universal representation module
V (D) of D is 22-dimensional. By (2.1.1) V (D) is an indecomposable exten-
sion of W by trivial modules. On the other hand, the stabilizer in U of a
point from D (isomorphic to 29 : L3(4)) does not have subgroups of index
2. By (2.8.1) this means that whenever V is a U -admissible representation

module of D and Ṽ is an indecomposable extension of V by a 1-dimensional
trivial module, then Ṽ is also a representation module of D and the result
follows. 2
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Chapter 3

Classical geometries

In this chapter we study representations of the classical geometries of
GF (2)-type and of the tilde geometries of symplectic type (the represen-
tations of the latter geometries were originally calculated in [Sh93]). In
Section 3.7 we discuss the recent results which led to the proof of Brouwer’s
conjecture on the universal abelian representations of the dual polar spaces
of GF (2)-type.

3.1 Linear groups

Let V = Vn(2) be an n-dimensional GF (2)-space, n ≥ 1. Let L = G(Ln(2))
be the projective geometry of V : the elements of L are the proper subspaces
of V , the type of a subspace is its dimension and the incidence relation is
via inclusion. The rank of L is n− 1 and the diagram is

2
◦

2
◦ · · ·

2
◦

2
◦.

The isomorphism between V and the dual V ∗ of V which is the space of
linear functions on V performs a diagram automorphism of L. We identify
a point of L (which is a 1-subspace in V ) with the unique non-zero element
it contains.

The following classical result (cf. [Sei73] or Theorem 1.6.5 in [Iv99]) is
quite important.

Lemma 3.1.1 Suppose that G is a flag-transitive automorphism group of
G(Ln(2)), n ≥ 3. Then one of the following holds:

(i) G ∼= Ln(2);

(ii) n = 3 and G ∼= Frob37 (the Frobenious group of order 21);

(iii) n = 4 and G ∼= Alt7.

In either case the action of G on V is irreducible. 2

37
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Lemma 3.1.2 If (R,ϕ) is the universal representation of L, then R ∼= V .
Furthermore (R,ϕ) is the unique G-admissible representation for a flag-
transitive automorphism group of L.

Proof. We turn R into a GF (2)-vector space by defining the addition
∗ via

ϕ(x) ∗ ϕ(y) = ϕ(x+ y)

for x, y ∈ L1. The last sentence follows from that in (3.1.1). 2

There are further point-line incidence systems with three points on a
line associated with L. As usual let Li be the set of elements of type i
in L (the i-subspaces). Let x and y be incident elements of type k and l,
respectively, where 0 ≤ k < i < l ≤ n (if k = 0 then x is assumed to be
the zero subspace and if l = n then y is assumed to be the whole space V ).
The set of elements in Li incident to both x and y is said to be a (k, l)-flag
in Li. Let Φi(k, l) be the set of all (k, l)-flags in Li. Clearly the size of a
(k, l)-flag is equal to the number of (i− k)-subspaces in an (l − k)-space.

Thus an (i− 1, i+ 1)-flag in Li has size 3 and hence (Li,Φi(i− 1, i+ 1))
is a point-line incidence system with three points on a line. In these terms
the point-line incidence system of L is just (L1,Φ1(0, 2)).

Lemma 3.1.3 Let (Ri, ϕ) be the universal abelian representation of the
point-line incidence system (Li,Φi(i− 1, i+ 1)). Then Ri is isomorphic to

the i-th exterior power
∧i

V of V .

Proof. We define a mapping ψ from the set of i-subsets of vectors in
V onto Ri which sends a linearly dependent set onto zero, otherwise

ψ({x1, ..., xi}) 7→ ϕ(〈x1, ..., xi〉).

Let {x1, ..., xi−1, xi} and {x1, ..., xi−1, x
′
i} be linearly independent i-subsets,

where xi 6= x′i. Then 〈x1, ..., xi−1〉 and 〈x1, ..., xi−1, xi, x
′
i〉 are incident

elements from Li−1 and Li+1, respectively. Hence

ϕ(〈x1, ..., xi−1, xi〉) + ϕ(〈x1, ..., xi−1, x
′
i〉) = ϕ(〈x1, ..., xi−1, xi + x′i〉)

and this is all we need in order to define the exterior space structure on Ri.
2

The above lemma is equivalent to the fact that the permutational
module of Ln(2) acting on the set of i-dimensional subspaces in the nat-
ural module V , factored over the subspace spanned by the lines from
(Li,Φi(i− 1, i+ 1)) is isomorphic to

∧i
V .

In what follows we will need some standard results on the GF (2)-
permutational module of PGL3(4) acting on the set of 1-dimensional sub-
spaces of the natural module V3(4) (cf. [BCN89]).

Lemma 3.1.4 Let V be a 3-dimensional GF (4)-space, Ω be the set of 1-
subspaces in V (so that Ω is of size 21) on which GL(V ) induces the doubly
transitive action of G ∼= PGL(3, 4). Let W be the power space of Ω (the
GF (2)-permutational module of (G,Ω)). Then
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(i) W = W 1 ⊕ W e, where W 1 = {∅,Ω} and W e consists of the even
subsets of Ω;

(ii) W e possesses a unique composition series

0 < T1 < T2 < W e,

where

(a) T1 is the 9-dimensional Golay code module for G (isomorphic to
the module of Hermitian forms on V ) and T1⊕W 1 is generated
by the 2-dimensional subspaces in V (considered as 5-element
subsets of Ω);

(b) W e/T2 is dual to T1;

(c) T2/T1 is 2-dimensional with kernel G′ ∼= PSL(3, 4). 2

3.2 The Grassmanian

The characterization (3.1.3) of the exterior powers of V can be placed into
the following context.

Let Pi be the power space of Li which also can be considered as the
GF (2)-permutation module of Ln(2) acting on the set Li of i-subspaces in
V .

For 0 ≤ j ≤ i ≤ n define the incidence map

ψij : Pi → Pj

by the following rule: if w ∈ Li then ψij(w) is the set of j-subspaces
contained in w and ψij is extended on the whole Pi by linearity.

Lemma 3.2.1 Let 0 ≤ j ≤ k ≤ i ≤ n. Then ψij is the composition of ψik
and ψkj.

Proof. Let w ∈ Li and u ∈ Lj . Then u ∈ ψij(w) if and only if there
is a k-subspace t containing u and contained in w (i.e., u ∈ ψkj(t) and
t ∈ ψik(w)). If the number of such subspaces t is non-zero, it equals to 1
modulo 2. Hence the result. 2

The above lemma implies the following inclusions:

Pj = Imψjj ≥ Imψj+1j ≥ ... ≥ Imψnj = {∅,Lj}

and we can consider the mapping

Ψij : Pi → Pj/Imψi+1j

induced by ψij (here we assume that 1 ≤ j ≤ i ≤ n− 1).

Lemma 3.2.2 If ∆ ∈ Φi(i− j, i+ 1), then ∆ ∈ ker Ψij.
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Proof. We have to show that ψij(∆) ∈ Imψi+1j . Let (x, y) be the
(i− j, i+ 1)-flag in L such that

∆ = {z | z ∈ Li, x ≤ z ≤ y}.

We claim that ψij(∆) = ψi+1j(y). If u ∈ ψij(∆), then u is contained in
some w ∈ ∆, hence u is also contained in y and belongs to ψi+1j(y). On the
other hand suppose that u ∈ Ψi+1j(y), which means that u is a j-subspace
in y. Let v be the subspace in y generated by u and x. Then

i− j ≤ dim v ≤ dimu+ dimx = i.

Since the number of i-subspace from ∆ containing v is odd, u ∈ ψij(∆) and
the result follows. 2

In 1996 the first author has posed the following conjecture.

Conjecture 3.2.3 If 1 ≤ j ≤ i ≤ n− 1 then the flags from Φi(i− j, i+ 1)
generate the kernel of Ψij.

Let Pi(j) be the quotient of Pi over the subspace generated by the flags
from Φi(i− j, i+ 1). The following observation can be easily deduced from
(3.2.1).

Lemma 3.2.4 For a given j the conjecture (3.2.3) is equivalent to the
equality

n∑
i=j

dimPi(j) = dimPj

(where dimPj is [nj ]2). 2

Lemma 3.2.5 The conjecture (3.2.3) holds for j = 1.

Proof. By (3.1.3) Pi(1) is the i-th exterior power of V which has
dimension (ni ). Since

n∑
i=1

(
n

i

)
= 2n − 1 = dimP1,

the result follows from (3.2.4). 2

The next case turned out to be much more complicated. It was ac-
complished in [Li01] (using some results and methods from [McC00]) and
implies Brouwer’s conjecture discussed in Section 3.7.

Proposition 3.2.6 The conjecture (3.2.3) holds for j = 2. 2

In Part II of the volume we will make use of the submodule structure
of P1 and of the information on the first and second degree cohomologies
of modules

∧i
V .

Recall that P1 is the GF (2)-permutational module of Ln(2) on the set
of the 1-dimensional submodules in V . Let P1

c = Imψn1 = {∅,L1} be the
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subspace of constant functions, P1
e be the subspace of functions with even

support and put
X (i) = P1

e ∩ Imψi1

for 1 ≤ i ≤ n. Then X (i)/X (i + 1) ∼= Pi(1) is isomorphic to
∧i

V (cf.
(3.1.3) and (3.2.5)) for 1 ≤ i ≤ n− 1.

We summarize this in the following

Lemma 3.2.7 The following assertions hold:

(i) P1 = P1
c ⊕ P1

e as a module for Ln(2);

(ii) P1
e = X (1) > X (2) > ... > X (n − 1) > X (n) = 0 is a composition

series for P1
e ;

(iii) X (i)/X (i + 1) ∼=
∧i

V , 1 ≤ i ≤ n − 1 are the composition factors of
P1
e . 2

In the next section we show that the composition series in (3.2.7 (ii)) is
the unique one.

3.3 P1
e is uniserial

We analyse the subspace in P1
e formed by the vectors fixed by a Sylow

2-subgroup B of Ln(2). As above we identify every 1-subspace from L1

with the unique non-zero vector of V it contains and treat P1 as the power
space of L1 with addition performed by the symmetric difference operator.
Then P1

e consists of the subsets of even size.
Since B is a Borel subgroup associated with the action of Ln(2) on

the projective geometry G(Ln(2)) of V , B is the stabilizer of a uniquely
determined maximal flag Φ:

0 = V0 < V1... < Vn−1 < Vn = V,

where dimVi = i for 0 ≤ i ≤ n. The orbits of B on L1 are the sets
Oi = Vi \ Vi−1, 1 ≤ i ≤ n. Furthermore, | Oi |= 2i−1, so that all the orbits
except for O1 (which is of size 1) have even length. This gives the following

Lemma 3.3.1

CP1(B) = {F (J) | J ⊆ {1, 2, ..., n}},

where F (J) =
⋃
i∈J Oi and F (J) ∈ P1

e if and only if 1 6∈ J . In particular

dimCP1(B) = n and dimCP1
e
(B) = n− 1.

2

Lemma 3.3.2 Let W be an Ln(2)-submodule in P1, which contains F (J)
for some J ⊆ {1, 2, ..., n}. If i ∈ J and i < n, then W contains F (J ∪ {i+
1}).
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Proof. We can certainly assume that i+ 1 6∈ J . Let Vi, U
(1)
i and U

(2)
i

be the distinct i-subspaces containing Vi−1 and contained in Vi+1. Then
Oi ∪Oi+1 = Vi+1 \ Vi−1 is the disjoint union of

Oi = Vi \ Vi−1, U
(1)
i \ Vi−1 and U

(2)
i \ Vi−1.

For α = 1 or 2 let g(α) be an element in Ln(2) which stabilizes the premax-

imal flag Φ \ Vi and maps Vi onto U
(α)
i (such an element can be found in

the minimal parabolic of type i). Then

F (J) ∪ F (J)g
(1)

∪ F (J)g
(2)

= F (J ∪ {i+ 1})

and the result follows. 2

Lemma 3.3.3 Let ∅ 6= J ⊆ {1, 2, ..., n} and i = min J . Then X (i − 1) is
the minimal Ln(2)-submodule in P1

e containing F (J) and

CX (i−1)(B) = {F (K) | K ⊆ {1, 2, ..., n}, minK ≥ i},

in particular dimCX (i−1)(B) = n− i− 1.

Proof. By (3.3.2) a submodule which contains F (J) also contains
F (Ji), where Ji = {i, i + 1, ..., n}. We claim that X (i − 1) is the minimal
Ln(2)-submodule in P1

e which contains F (Ji). Indeed, by the definition
Imψi−1,1 is generated by the (i− 1)-subspaces in V (treated as subsets of
L1). Since Imψi−1,1 contains Imψn1 = {∅,L1}, X (i − 1) is generated by
the complements of the (i − 1)-subspaces i.e., by the images under Ln(2)
of V \ Vi−1 = F (Ji). Hence the claim follows. Since X (i − 1) contains
X (j − 1) for every j ≥ i, X (i− 1) contains F (Jj) for these j, in particular
it contains F (K) for all K ⊆ {1, 2, ..., n} with minK ≥ i. Since X (i − 1)
does not contain X (j − 1) for j < i, the result follows. 2

We need the following standard result from the representation theory
of groups of Lie type in their own characteristic [Cur70], which can also be
proved by elementary methods.

Lemma 3.3.4 The centraliser of B in
∧i

V is 1-dimensional for every
1 ≤ i ≤ n− 1. 2

Now we are ready to prove the main result of the section.

Proposition 3.3.5 The only composition series of P1
e , as a module for

Ln(2) is the one in (3.2.7(ii)).

Proof. Let

P1
e = W (1) > W (2) > ... > W (m− 1) > W (m) = 0

be a composition series of P1
e . Then by (3.3.5) and the Jordan–Hölder

theorem m = n and W (i)/W (i + 1) ∼=
∧σ(i)

V for a permutation σ of
{1, 2, ..., n}. By (3.3.4) the centraliser of B in each composition factor is
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1-dimensional and hence dimCW (i)(B) ≤ n− i. Since dimCP1
e
(B) = n− 1

by (3.3.1), we have

dimCW (i)(B) = n− i for 1 ≤ i ≤ n.

In particular W (i − 1) \W (i) contains a vector fixed by B. Let j be the
minimal index, such that W (k) = X (k) for all k > j and suppose that
j ≥ 2. Then by (3.3.3) W (j) \ W (j + 1) contains a vector F (J) such
that minJ ≤ j + 1. By (3.3.2) W (j) contains F (Jl) for some l ≤ j + 1.
Hence by (3.3.3) W (j) contains X (l) for some l ≤ j. Since W (j)/W (j +
1) ∼= W (j)/X (j + 1) is irreducible, this gives W (j) = X (j) contrary to the
minimality assumption on j. Hence the result follows. 2

3.4 G(S4(2))

In this section we start by calculating the universal representation module
of G(S4(2)) which turns out to be the universal representation group of this
geometry. The treatment is very elementary and we present it here just in
order to illustrate the technique we use.

First recall some results from Section 2.5 in [Iv99]. So let S = (Π, L)
be the generalized quadrangle G(S4(2)) of order (2, 2). Then Π is the set
of 2-subsets in a set Ω of size 6, L is the set of partitions of Ω into three
2-subsets and the incidence relation is via inclusion. Let 2Ω be the power
space of Ω let P(Ω)+ be the codimension 1 subspace in 2Ω, formed by the
subsets of even size. Let

ϕ : p 7→ Ω \ p

be the mapping of Π into P(Ω)+ (where p is treated as a 2-subset of Ω).

Lemma 3.4.1 (P(Ω)+, ϕ) is an abelian representation of S = G(S4(2)).

Proof. It is clear that P(Ω)+ is generated by ϕ(Π) (the set of 4-subsets
in Ω). If Ω = p1 ∪ p2 ∪ p3 is a line in S then

ϕ(p1) = p2 ∪ p3, ϕ(p2) = p1 ∪ p3, ϕ(p3) = p1 ∪ p2

and since the addition is performed by the symmetric difference operator,

ϕ(p1) + ϕ(p2) + ϕ(p3) = 0

and the result follows. 2

Let Γ be the collinearity graph of S, so that Γ is the graph on the set of
2-subsets of Ω in which two such subsets are adjacent if they are disjoint.
The suborbit diagram of Γ is the following

���� ���� ����1 6 8
6 1 4 3

1 3

Lemma 3.4.2 β(Γ) = 5.
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Proof. Since S is a generalized polygon with lines of size 3, every edge
in Γ is contained in a unique triangle which is the point-set of a line and
for a point x and a triangle T there is a unique point in T which is nearest
to x. In view of these it suffices to notice that the subgraph induced by
Γ1(x) is the union of 3 disjoint edges, so c(Γ1(x)) = 3 and the subgraph
induced by Γ2(x) is connected (isomorphic to the 3-dimensional cube), so
that c(Γ2(x)) = 1. 2

Combining (2.2.1), (3.4.1) and (3.4.2) we obtain the following.

Lemma 3.4.3 The representation (P(Ω)+, ϕ) in (3.4.1) is the universal
abelian one. 2

But in fact the following holds.

Lemma 3.4.4 The representation (P(Ω)+, ϕ) is universal.

Proof. Let Θ = (Cay(P(Ω)+, ϕ(Π)) Then Θ is a Taylor graph with
the following suborbit diagram:

���� ���� ���� ����1 15 15 1
15 1 8 8 1 15

6 6

{α} Θ1(α) Θ2(α) Θ3(α)

By (2.5.1) our representation is universal if and only if the fundamental
group of Θ is generated by the geometrical triangles. One can easily see
from the above suborbit diagram that every triangle in Θ is a geometrical
triangle. Thus we have to show that every cycle in Θ is triangulable. Of
course it is sufficient to consider non-degenerate cycles and in Θ they are of
lengths 4, 5 and 6. To check the triangulability is an elementary exercise.2

In view of (2.3.1) and (2.3.2) by (3.4.3) there are 31 proper geometrical
hyperplanes in S. These hyperplanes possess a uniform description. Let
∆ be a subset of Ω. Then the rest of the points (2-subsets of Ω) whose
intersection with ∆ have the same parity as ∆:

H(∆) = {v | v ∈ Π, |∆| = |∆ ∩ v| (mod 2)}

is a geometrical hyperplane in S. Since clearly H(∆) = H(Ω\∆) we obtain
exactly 31 geometrical hyperplanes.

If |∆| = 2 then H(∆) are the points at distance at most 1 from ∆
(treated as a point) in the collinearity graph. If |∆| = 1 then H(∆) is
stabilized by Sym5

∼= O−4 (2) while if |∆| = 3 then H(∆) is stabilized by
Sym3 o Sym2

∼= O+
4 (2).

3.5 Symplectic groups

Let V be a 2n-dimensional (n ≥ 2) GF (2)-space with a non-singular sym-
plectic form Ψ, say if {v1

1 , ..., v
1
n, v

2
1 , ..., v

2
n} is a (symplectic) basis, we can
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put Ψ(vki , v
l
j) = 1 if i = j and k 6= l and Ψ(vki , v

l
j) = 0 otherwise. The

symplectic geometry G = G(S2n(2)) is the set of all non-zero totally singu-
lar subspaces U in V with respect to Ψ (i.e., such that Ψ(u, v) = 0 for all
u, v ∈ U). The type of an element is its dimension and the incidence is via
inclusion. The automorphism group G ∼= S2n(2) of G is the group of all
linear transformations of V preserving Ψ. The diagram of G is

2
◦

2
◦ · · ·

2
◦

2
◦

2
◦

Since the points and lines of G are realized by certain 1- and 2-subspaces
in V with the incidence relation via inclusion, we observe that V supports
a natural representation of G. We will see below that the universal repre-
sentation group is abelian twice larger than V .

Let v be a point (a 1-subspace in V which we identify with the only
non-zero vector it contains) and

v⊥ = {u ∈ V # | Ψ(v, u) = 0}

be the orthogonal complement of v with respect to Ψ.
The form Ψ induces on v⊥/v (which is a (2n − 2)-dimensional GF (2)-

space) a non-singular symplectic form and the totally singular subspaces
in v⊥/v constitute the residue resG(v) ∼= G(S2n−2(2)). The stabilizer G(v)
induces S2n−2(2) on v⊥/v. The kernel K(v) of this action is an elementary
abelian group of order 22n−1. The kernel R(v) of the action of G(v) on v⊥

(on the set of points collinear to v) is of order 2 and its unique non-trivial
element is the symplectic transvection

τ(v) : u 7→ u+ Ψ(v, u)v.

The quotient K(v)/R(v) is the natural symplectic module of G(v)/K(v) ∼=
S2n−2(2) and resG(v) possesses a representation in this quotient by (1.5.1).
But in fact resG(v) possesses a representation in the whole K(v) and this
representation is universal.

In order to construct the universal representation of G we look at the
hyperplanes. The hyperplanes in G can be described as follows. Let v be a
point of G then v together with the points collinear to v in the collinearity
graph Γ of G is a geometrical hyperplane.

Let Q be the set of quadratic forms f on V associated with Ψ in the
sense that

Ψ(u, v) = f(u) + f(v) + f(u+ v).

Lemma 3.5.1 The group G ∼= S2n(2) acting on Q has two orbits Q+ and
Q− with lengths 2n−1(2n+ 1) and 2n−1(2n−1), with stabilizers isomorphic
to O+

2n(2) ∼= Ω+
2n(2).2 and O−2n(2) ∼= Ω−2n(2).2, respectively. The action on

either of these orbits is doubly transitive. 2

A subspace U in V is said to be totally singular with respect to a
quadratic form f (associated with Ψ) if f(u) = 0 for all u ∈ U (in this case
it is clearly totally singular with respect to Ψ). Thus the dimension of a
totally singular subspace with respect to f (the Witt index w(f)) is at most
n. In fact w(f) = n if f is of plus type (i.e., if f ∈ Q+) and w(f) = n− 1
if f is of minus type (i.e., if f ∈ Q−).
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Lemma 3.5.2 Let f be a quadratic form on V associated with Ψ and H(f)
be the set of non-zero singular vectors with respect to f :

H(f) = {v ∈ V # | f(v) = 0}.

Then H(f) (considered as a subset of the point-set) is a geometrical hyper-
plane in G(S2n(2)).

Proof. Let T = {x, y, z} be a line in G (the non-zero vectors of a totally
singular 2-subspace). Since Ψ(x, y) = 0, x+ y + z = 0 and f is associated
with Ψ, we have

f(z) + f(x) + f(y) = 0

and hence |T ∩H(f)| is of size 1 or 3 and the result follows. 2

Thus we have seen 22n+1−1 geometrical hyperplanes (22n−1 of the form
H(v) where v is a point and 22n of the form H(f) where f is a quadratic
form associated with Ψ). Hence the universal representation module of G
is at least (2n+ 1)-dimensional.

Lemma 3.5.3 Let (W,ϕa) be the universal abelian representation of G ∼=
G(S2n(2)). Then dimW = 2n+1 and for a point x the dimension of W 2(x)
is at most 1.

Proof. In view of the remark made before the lemma all we have to do
is to show that the dimension is at most 2n+ 1. We proceed by induction
on n. By (3.4.4) the result holds for n = 2. Suppose that n ≥ 3 and that
the universal abelian representation of G(S2n(2)) is (2n − 1)-dimensional.
Consider the collinearity graph Γ of G and let v be a vertex. Then W0(v)
is 1-dimensional, W 1(v) is at most (2n− 1)-dimensional by (2.6.3) and the
induction hypothesis (recall that resG(v) ∼= G(S2n−2(2))). Finally W 2(v) is
at most 1-dimensional since the subgraph in Γ induced by Γ2(v) is connected
(this is a well-known fact and can be established as an easy exercise). Since
the diameter of Γ is 2, we are done. 2

The universal representation module of G(S2n(2)) is the so-called or-
thogonal module of S2n(2) ∼= Ω2n+1(2). Our final result of this section is
the following.

Proposition 3.5.4 The universal representation of G(S2n(2)) is abelian.

Proof. Let Γ be the collinearity graph of G = G(S2n(2)), x, y ∈ Γ
and (V, ϕu) be the universal representation of G. We have to show that
ϕu(x) and ϕu(y) commute. If x and y are collinear this is clear. Otherwise
dΓ(x, y) = 2 and there is a vertex, say z collinear to them both. Again
proceeding by induction on n we assume that R1(z) is abelian. Then by
(2.2.3) [ϕu(x), ϕu(y)] ∈ R0(z). But since two vertices at distance 2 in Γ have
more than one common neighbour (this is easy to check), the commutator
must be trivial. 2
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3.6 Orthogonal groups

In view of the isomorphism S2n(2) ∼= Ω2n+1(2), the results (3.5.3) and
(3.5.4) describe the universal representation of the polar space P(Ω2n+1(2))
of odd dimensional orthogonal group over GF (2). In this section we estab-
lish the similar result in the even dimensional case.

Let V be a 2n-dimensional GF (2)-space, where n ≥ 2 and f be a non-
singular orthogonal form on V . Then the Witt index (the dimension of a
maximal totally isotropic subspace) is either n or n − 1, so that f is of
plus or minus type, respectively. The commutator subgroup of the group
of linear transformations of V preserving f is Ω+

2n(2) or Ω−2n(2) depending
on whether f is of plus or minus type.

Let ε = + or − denote the type of f . The corresponding polar space
P = P(Ωε2n(2)) is the geometry whose elements are the subspaces of V
which are totally singular with respect to f ; the type of an element is its
dimension and the incidence relation is via inclusion. Then the rank of P
is the Witt index of f (i.e., n or n− 1) and the diagram of P is

2
◦

2
◦ · · ·

2
◦

2
◦

1
◦,

or

2
◦

2
◦ · · ·

2
◦

2
◦

4
◦,

respectively.

By the definition if ϕ is the identity mapping them (V, ϕ) is an abelian
representation of P.

Lemma 3.6.1 The representation (V, ϕ) is universal.

Proof. Probably the easiest way to proceed is to follow the strategy
of the proof of (3.4.4). So we consider the graph Θ = Cay(V, Imϕ). Then
again Θ is a Taylor graph (a double cover of the complete graph) which is
locally the collinearity graph of P. Every triangle is geometrical and it is
an easy combinatorial exercise to check that Θ is triangulable. 2

We summarize the results in this and the previous sections in the fol-
lowing.

Proposition 3.6.2 Let V be an m-dimensional GF (2)-space and f be a
non-singular orthogonal form on X. Let P be the polar space associated
with V and f , Γ be the collinearity graph of P and suppose that the rank of
P is at least 2. Then

(i) (V, ϕ) is the universal representation (where ϕ is the identity map-
ping);

(ii) Γ is of diameter 2;

(iii) if p is a point then V 2(p) has order 2. 2
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3.7 Brouwer’s conjecture

In this section we discuss representations of the dual polar spaces with
3 points per line. The question about representations of such dual polar
spaces is interesting by its own and it is also important for the classification
of extended dual polar spaces (cf. Theorem 1.13.6 in [Iv99]).

Let Dt(n) denote the classical dual polar space of rank n ≥ 2 with 3
points per a line and D be the simple subgroup in the automorphism group
of Dt(n). Then Dt(n) belongs to the diagram

2
◦

t
◦

t
◦ · · ·

t
◦

t
◦,

where t = 2 or 4 and D is isomorphic to S2n(2) or U2n(2), respectively.
If X is the natural module of D (a 2n-dimensional GF (t)-space) then the
elements of Dt(n) are the non-zero subspaces of X which are totally singular
with respect the non-singular bilinear form Ψ on X preserved by D; the
type of a subspace of dimension k is n − k + 1 and the incidence relation
is via inclusion. In particular the points of Dt(n) are the maximal (i.e.,
n-dimensional) totally singular subspaces. Below we summarize some basic
properties of Dt(n) (cf. [BCN89] and Section 6.3 in [Iv99]).

Let Γ be the collinearity graph of Dt(n) and x ∈ Γ. Then resDt(n)(x) is
the dual of the projective geometry of the proper subspaces of x. The sta-
bilizer D(x) of x induces Ln(t) on this residue with Q(x) = O2(D(x)) being
the kernel. The subgroup Q(x) is an elementary abelian 2-group which (as a
GF (2)-module for D(x)/Q(x)) is isomorphic to the n(n+1)/2-dimensional
module of quadratic forms on X if t = 2 and to the n2-dimensional module
of the Hermitian forms on X if t = 4. The action of Q(x) on Γn(x) is
regular.

The graph Γ is a near n-gon which means that on every line there is a
unique element which is nearest to x in Γ. Let y ∈ Γi(x) for 1 ≤ i ≤ n− 1.
Then x ∩ y is the unique element of type n − i incident to both x and y.
The vertices of Γ (treated as subspaces in X) which contain x ∩ y induce
in Γ a strongly geodetically closed subgraph isomorphic to the collinearity
graph of

Dt(i) ∼= resDt(n)(x ∩ y)

If y1, y2 ∈ Γi(x) for 1 ≤ i ≤ n, then y1 and y2 are in the same connected
component of the subgraph induced by Γi(x) if and only if x∩ y1 = x∩ y2.
This implies that the subgraph induced by Γn(x) is connected. Thus D(x)
acts on the set of connected components of the subgraph induced by Γi(x)
as it acts on the set of (n − i)-dimensional subspaces in x, in particular
Q(x) is the kernel of the action.

Let us turn to the representations of Dt(n). The rank 2 case is actually
done already.

Lemma 3.7.1 The universal representation group of Dt(2) is elementary
abelian of order 25 and 26, for t = 2 and 4, respectively.
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Proof. Because of the isomorphisms S4(2) ∼= Ω5(2) and U4(2) ∼= Ω−6 (2),
the dual polar spaces under consideration are isomorphic to the polar spaces
of the corresponding orthogonal groups, so (3.6.2) applies. 2

Lemma 3.7.2 The dimension dt(n) of the universal representation module
of Dt(n) is greater than or equal to mt(n), where

m2(n) = 1 +
[n

1

]
2

+
[n

2

]
2

and
m4(n) = 1 +

[n
1

]
4
.

Proof. Let N be the incidence matrix of point-line incidence system
of Dt(n). This means that the columns of N are indexed by the points in
Dt(n), the rows are indexed by the lines in Dt(n) and the (p, l)-entry is 1 if
p ∈ l and 0 otherwise. Then dt(n) is the number of points in Π minus the
GF (2)-rank rk2 N of N . The latter rank is at most the rank rk N of N
over the real numbers. By elementary linear algebra we have the following:

rk N = rk NNT and NNT = A+
[n

1

]
t
I,

where A is the adjacency matrix of the collinearity graph Γ of Dt(n) and
[n1 ]t is the number of lines incident to a given point. This shows that dt(n)
is at least the multiplicity of −[n1 ]t as an eigenvalue of A. It is known (cf.
Section 8.4 in [BCN89]) that this multiplicity is exactly mt(n). 2

The above result for the case t = 2 was established in an unpublished
work of A.E. Brouwer in 1990 (cf. [BB00]), who has also checked that the
bound is exact for n ≤ 4 and posed the following.

Conjecture 3.7.3 The dimension of the universal representation module
of D2(n) is precisely m2(n).

This conjecture (known as Brouwer’s conjecture) has attracted the at-
tention of a number of mathematicians during the 90s. It was proved for
n = 3 in [Yos92], for n = 4, 5 in [Coo97], for n = 6, 7 in [BI97].

Lemma 3.7.4 Let (V, ϕa) be the universal abelian representation of Dt(n)
and let the sections V i(x), 1 ≤ i ≤ n be defined with respect to a vertex x
of the collinearity graph Γ of Dt(n). Let L be the projective geometry of the
dual of x, so that Li is the set of (n − i)-dimensional subspaces in x and
let Pi be the power space of Li. Then

(i) V0(x) and V n(x) are 1-dimensional;

(ii) for 1 ≤ i ≤ n− 1 there is a mapping

χ : Pi → V i(x)

which is a surjective homomorphism of D(x)-modules;
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(iii) V n−1(x) is isomorphic to a factor module of Q(x);

(iv) if t = 2 and 2 ≤ i ≤ n − 1 then the flags from Φi(i − j, i + 1) are in
the kernel of the homomorphism χ as in (ii).

Proof. (i) is obvious. Since the connected components of the subgraph
induced by Γi(x) are indexed by the elements of Li, (ii) follows from the
proof of (2.2.1). Let u ∈ Γn(x), let {z1, ..., zk} = Γ(u)∩Γn(x) and let yi be
the vertex in Γn−1(x) such that {u, zi, yi} is a line, 1 ≤ i ≤ k = [n1 ]t. Then
it is easy to check that the vertices yi are in pairwise different connected
components of the subgraph induced by Γn−1(x). On the other hand Q(x)
acts regularly on Γn(x), which means that the subgraph induced by this
set is a Golay graph of Q(x). This shows that Q(x) possesses a generating
set {q1, ..., qk} where qi maps u onto zi. Let yi be the image of ϕa(yi) in
V n−1(x) and put

ν : qi 7→ yi

for 1 ≤ i ≤ k. We claim that ν induces a homomorphism of Q(x) onto
V n−1(x). In order to prove the claim we have to show that whenever
qi1qi2 ...qim = 1 we have yi1yi2 ...yim = 1. Assuming the former equality put
u0 = u and for 1 ≤ j ≤ m let uj be the image of uj−1 under qij . Since
Q(x) acts regularly on Γn(x), (u0, u1, ..., um) is a cycle and if vj is such that
{uj−1, vj , uj} is a line then it is easy to check that vj = yj and the claim
follows from (2.2.2).

Notice that if t = 2 and n = 3, then Q(x) is of order 26, therefore
in this case V 2(x) is generated by seven pairwise commuting involutions
indexed by the connected components of the subgraph induced by Γ2(x).
The product of these involutions is the identity element.

In order to prove (iv) let y ∈ Γi+1(x) and z ∈ Γi−2(x) be such that
dΓ(z, y) = 3. Then x ∩ y is an (n− i− 1)-dimensional subspace contained
in x ∩ z which is (n − i + 2)-dimensional. Let ∆ be the subgraph in Γ
induced by the vertices which contain z ∩ y. Then ∆ is isomorphic to
the collinearity graph of D3(2). Let u1, ..., u7 be representatives of the
connected components of the subgraph induced by Γi(x) which intersect
∆. Then T := {uj ∩ x | 1 ≤ j ≤ 7} is the set of (n − i)-subspaces in x
containing x∩ y and contained in x∩ z. In other terms T ∈ Φi(i− j, i+ 1).
Let uj be the image of ϕa(uj) in V i(x). Then by (iii) and the previous
paragraph we have

u1u2....u7 = 1

and (iv) is proved. 2

The application of (3.7.4 (i), (ii), (iii)) to the case rank 3 case immedi-
ately give the following result originally proved in [CS93] and [Yos94].

Corollary 3.7.5 The universal representation module for Dt(3) has di-
mension m2(3) = 15 for t = 2 and m4(3) = 22 for t = 4. 2

By (3.7.4 (iv)) the main result (3.2.6) of [Li01] implies Brouwer’s conjec-
ture for all n ≥ 2. An alternative independent proof of this conjecture was
established in [BB00]. Very recently P. Li applied his technique to prove
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in [Li00] the natural analogue of Brouwer’s conjecture for the unitary dual
polar spaces (i.e., for the case t = 4) [Li00]. Thus we have the following
final result:

Theorem 3.7.6 The dimension of the universal representation module of
Dt(n) is equal to the number mt(n) defined in (3.7.2). 2

In the rank 3 case the question about the universal representation group
can also be answered completely.

Lemma 3.7.7 Let R be the universal representation group of Dt(3). Then

(i) R is non-abelian;

(ii) the commutator subgroup of R is of order 2.

Proof. Let F be the Lie type group F4(2) or 2E6(2), F be the F4-
building associated with F and Ξ be the collinearity graph of F . Then the
diagram of F is

2
◦

2
◦

2
◦

2
◦

or

2
◦

2
◦

4
◦

4
◦,

if x is a point of F then resF (x) is isomorphic to Dt(3) for t = 2 or 4,
respectively and the suborbit diagram of Ξ with respect to the action of
F can be found in Section 5.5 of [Iv99]. If F (x) is the stabilizer of x in
F and Q(x) = O2(F (x)), then F (x) ∼= 21+6+8 : S6(2) if F ∼= F4(2) and
F (x) ∼= 21+20

+ : U6(2) if F ∼=2E6(2); Q(x) is non-abelian (with commuta-
tor subgroup of order 2) and acts regularly on the set Ξ3(x) of vertices at
distance 3 from x in Ξ. Furthermore, if y ∈ Ξ3(x) then F (x, y) is the com-
plement to Q(x) in F (x); in particular it acts flag-transitively on resF (x).
Since in addition Ξ3(x) is the complement of a geometrical hyperplane in
F , we conclude that the subgraph Θ in Ξ induced by Ξ3(x) is a Cayley
graph of Q(x) with respect to a generating set indexed by the point set of
Dt(3) = resF (x). Since Θ is a subgraph in the collinearity graph of F , it is
clear that the geometrical triangles are present and in view of the discus-
sions in Section 2.5, we observe that Q(x) is a representation group of D
and hence (i) follows.

The suborbit diagram of the collinearity graph of Dt(3) (in cases t = 2
and 4, respectively) is given below.

���� ����1 2 · 21 24 · 21 2942 1

1

40 5

5

32 21

21�
�
�
�

�
�
�
�

���� ����1 2 · 7 23 · 7 2614 1

1

12 3

3

8 7

7�
�
�
�

�
�
�
�

We apply (2.3.7) for B(x) = Γ3(x). The conditions in (2.3.7) follow from
the above mentioned basic properties of Dt(3). 2
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In the remainder of the section we provide some ground for the belief
that the universal representation groups of Dt(n) for n ≥ 4 are “large” by
establishing a lower bound on the order of the commutator subgroup of
the universal representation group of D2(4). We start by formulating yet
another useful property of D2(n) which can be deduced directly from the
definitions.

Lemma 3.7.8 Let D = D2(n), Γ be the collinearity graph of D, v be an
element of type n in D (a 1-subspace in the natural module X) and ∆ =
∆(v) be the subgraph in Γ induced by the vertices containing v. Then

(i) ∆ is isomorphic to the collinearity graph of resD(v) ∼= D2(n− 1);

(ii) if x ∈ Γ \∆ then x is adjacent in Γ to a unique vertex from ∆ which
we denote by π∆(x);

(iii) if l = {x, y, z} is a line in D then either l ⊂ ∆, or |l ∩ ∆| = 1 or
l ⊂ Γ \∆;

(iv) if l ⊂ Γ \∆ then {π∆(x), π∆(y), π∆(z)} is a line of D. 2

Lemma 3.7.9 In terms of (3.7.8) let R be a group and ϕ : ∆ → R be a
mapping such that (R,ϕ) is a representation of resD(v) ∼= D2(n−1). Define
a mapping ψ : Γ→ R by the following rule:

ψ(x) =

{
1 if x ∈ ∆;
ϕ(π∆(x)) otherwise.

Then (R,ψ) is a representation of D.

Proof. Easily follows from (3.7.8). 2

Let Π = {v1, v2, ..., vk} be the set of elements of type n in D2(n), where
k = 22n − 1. For 1 ≤ i ≤ k let (Ri, ϕi) be the universal representation
of resD2(n)(vi) and (Ri, ψi) be the representation of D2(n) obtained from
(Ri, ϕi) as in (3.7.9). Let

(T, ψ) = (R1, ψ1)× ...× (Rk, ψk)

be the product of the representations (Ri, ψi). By the general result (2.1.4)
we obtain the following lemma.

Lemma 3.7.10 (T, ψ) is a representation of D2(n). 2

Let us estimate the order of the commutator subgroup T ′ of T in the
case n = 4. Let zi be the unique non-identity element in the commutator
subgroup R′i of Ri (R′i is of order 2 by (3.7.7)). Then the commutator
subgroup T ′0 of the direct product T0 := R1×...×Rk is of order 2k consisting
of the elements

(zε11 , z
ε2
2 , ..., z

εk
k ),

where εi ∈ {0, 1}. Thus T ′0 is isomorphic to the power space of the set Π
(the set of elements of type 4 in D2(4)). By (3.7.9) and the proof of (3.7.7
(ii)) we have the following.
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Lemma 3.7.11 For x, y ∈ Γ we have

[ψi(x), ψi(y)] = zi

if and only if {x, y} ∩∆(vi) = ∅ and dΓ(π∆(vi)(x), π∆(vi)(y)) = 3. 2

Lemma 3.7.12 For x, y ∈ Γ let

[ψ(x), ψ(y)] = (z
ε1(x,y)
1 , z

ε2(x,y)
2 , ..., z

εk(x,y)
k ).

Then

(i) if dΓ(x, y) ≤ 2 then εi(x, y) = 0 for all 1 ≤ i ≤ k;

(ii) if dΓ(x, y) = 3 then εi(x, y) = 1 if and only if Ψ(x ∩ y, vi) = 1;

(iii) if dΓ(x, y) = 4 then εi(x, y) = 1 if and only if vi /∈ x ∪ y.

Proof. If dΓ(x, y) ≤ 2 then x and y are contained in a common quad
and by (3.7.1) their images even in the universal representation group of
D2(4) commute, which gives (i). If dΓ(x, y) = 3 then u := x ∩ y is 1-
dimensional. Hence the intersection (v⊥i ∩ x) ∩ (v⊥i ∩ y) if non-empty can
only be u and u is in the intersection if and only if Ψ(u, vi) = 0, hence (ii)
follows. If dΓ(x, y) = 4 then x ∩ y = 0. If vi ∈ x or vi ∈ y then ψi(x) = 1
or ψi(y) = 1, respectively and εi(x, y) = 0. On the other hand if vi 6∈ x∪ y
then (v⊥i ∩ x) ∩ (v⊥i ∩ y) = 0. This means that

dΓ(π∆(vi)(x), π∆(vi)(y)) = 3 and by (3.7.11) εi(x, y) = 1,

which gives (iii) and completes the proof. 2

It was checked by D.V. Pasechnik using the GAP computer package
[GAP] that vectors as in (3.7.12 (ii), (iii)) generate a 135-dimensional sub-
module. Thus we have the following.

Proposition 3.7.13 The commutator subgroup of the universal represen-
tation group of D2(4) is of order at least 2135. 2

3.8 G(3 · S4(2))

Let G = G(3 · S4(2)), G = Aut G ∼= 3 · S4(2), E = O3(G) and (V, ϕ) be
the universal abelian representation of G. Let V z = CV (E), V c = [V,E].
Then by the previous subsection and (2.4.1) V z is the 5-dimensional natural
module for O5(2) ∼= S4(2). From the basic properties of the action of M24

on G(M24) we observe that the hexacode module Vh is a representation
module for G. Since E acts on Vh fixed-point freely, Vh is a quotient of V c.

Lemma 3.8.1 V c = Vh.
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Proof. The fixed-point free action of E on V c turns the latter into a
GF (4)-module for G. If x = {x, y, z} is an orbit of E on the point set of
G then ϕc(x) := 〈ϕc(x), ϕc(y), ϕc(z)〉 is a 1-dimensional GF (4) subspace of
V c. On the other hand, x is a point of G = G(S4(2)). Hence we can consider
the mapping χ : x 7→ ϕc(x) of the point-set into the set of 1-dimensional
subspace of V c. Arguing as in the proof of (2.2.1) and in view of (3.4.2) it
is easy to show that the GF (4)-dimension of V c is at most 5. Let U be the
kernel of the homomorphism of V c onto Vh. Then the GF (4)-dimension of
U is at most 2 and the action of E on U is fixed-point free. Since G does
not split over E, unless U is trivial, it must be a faithful GF (4)-module for
G. By the order reason G is not a subgroup of ΓL2(4), hence U is trivial
and the result follows. 2

Let G∗ be the enrichment of G = G(3 · S4(2)). Recall that the points of
G∗ are that of G while the lines of G∗ are the lines of G together with the
orbits of E on the set of points (thus G has 45 points and 60 lines).

Lemma 3.8.2 R(G∗(3 · S4(2))) ∼= Vh.

Proof. By (3.8.1) we only have to show that R∗ := R(G∗(3 · S4(2)))
is abelian. For this we apply (2.3.7). Consider the collinearity graph Γ of
G = G(3 · S4(2)) the suborbit diagram of which is given in Section 2.6 in
[Iv99] and let ϕ be the mapping which turns R∗ into the representation
group of G∗. Let

B(x) = Γ2(x), A(x) = Π \B(x)

We claim that the conditions in (2.3.7) are satisfied. Since {x} ∪ Γ4(x) is
the only non-trivial imprimitivity block of 3 · S4(2) on Γ containing x, it
is clear that the graph Ξ defined as in (2.3.7) (i) is connected. Since the
girth of Γ is 5 it is easy to see that the graph Σx defined as in (2.3.7) (ii)
is connected. Let y ∈ Γi(x) for i = 0, 1, 3 or 4. If i = 0, 1 or 4 then x and y
are equal or adjacent in G∗ and hence [ϕ(x), ϕ(y)] = 1. If i = 3 then ϕ(x)
and ϕ(y) commute by (2.4.4). Thus by (2.3.7) the commutator subgroup of
R∗ is of order at most 2. By (3.8.1) R∗/(R∗)′ ∼= Vh and since 3 ·S4(2) does
not preserve a non-zero symplectic form on Vh, R∗ is abelian by (2.3.8) and
(2.3.9). 2

In what follows we will make use of the following property of the hexa-
code module which can be checked directly.

Lemma 3.8.3 Let (R∗, ϕ) be the universal representation of G∗(3 ·S4(2)),
where R∗ is isomorphic to the hexacode module Vh. Let x be a point and
R∗1(x) be the subgroup in R∗ generated by the elements ϕ(y) taken for the
points y collinear to x in G(3 · S4(2)) (there are six such points). Then
R∗1(x) is of order 23. 2

Lemma 3.8.4 The universal representation group of G(3·S4(2)) is infinite.

Proof. By (2.3.6) it is sufficient to show that G = G(3 ·S4(2)) contains
a hyperplane with a disconnected complement. Let G = G(S4(2)) and χ be
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the covering of G onto G. Let Ω be a set of size 6 so that the points of G
are the transpositions in G = Sym(Ω). Then the lines of G are maximal
sets of pairwise commuting transpositions. Notice that the points of G are
the involutions which map onto transpositions under the homomorphism
of G onto G and the lines of G are maximal sets of such involutions which
commute. Let α be an element of Ω andH be the set of transpositions which
do not stabilize α. Then |H| = 5 and it is easy to see that H is a geometrical
hyperplane. The complement of H consists of 10 transpositions in the
stabilizer of α in G, which form a Petersen subgraph. Let H = χ−1(H), so
that H is a hyperplane in G by (2.3.1). Let S be the preimage in G of the
stabilizer of α in G. Then A := O∞(S) ∼= Alt5 and S/A ∼= Sym3. It is easy
to see that the points in the complement of H (considered as involutions in
G) map surjectively into the set of involutions in S/A. Since two points in
the collinearity graph of G are adjacent if they commute, the preimage in
the complement of H of an involution from S/A is a connected component
(isomorphic to the Petersen graph). 2

In Section 10.2 we will make use of the following property of the uni-
versal representation module of G(3 · S4(2)) which can be check by direct
calculation.

Lemma 3.8.5 Let (W,ψ) be an abelian representation of G = G(3 ·S4(2)).
Let l be a line of G and Ξ be the set of points of G collinear to at least one
point in l (so that | Ξ |= 15) and

dl(W ) = dim 〈ψ(x) | x ∈ Ξ〉.

Then

(i) if W = V is the universal abelian representation module of G (so that
dimW = 11) then dl(W ) = 8;

(ii) if W = V z is the 5-dimensional orthogonal module, then dl(W ) =
dimW = 5. 2

3.9 G(Alt5)
Recall that the points and lines of G = G(Alt5) are the edges and vertices
of the Petersen graph with the natural incidence relation. The collinearity
graph Γ of G is a triple antipodal covering of the complete graph on 5
vertices with the following intersection diagram.

��� ��� ��� ���1 4 8 2
4 1

1
2 1

2
1 4

Thus every edge is contained in a unique antipodal block of size 3 called
an antipodal triple. The following result is an easy combinatorial exercise.

Lemma 3.9.1 Let G∗ be the point-line incidence system whose points are
the points of G(Alt5) and whose lines are the lines of G(Alt5) together with
the antipodal triples. Then G∗ ∼= G(S4(2)). 2
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By the above lemma the universal representation group V5(2) of
G(S4(2)) is a representation group of G and it is the largest one with the
property that the images of points in an antipodal triple product to the
identity element. The next result shows that the universal representation
module of G is related to G(3 · S4(2)).

Lemma 3.9.2 The module V (G(Alt5)) is 6-dimensional, isomorphic to the
hexacode module restricted to a subgroup Sym5 in 3 · S4(2).

Proof. Let H = G(3 ·S4(2)), H = G(S4(2)), H = 3 ·S4(2), H = S4(2).
Let G ∼= Sym5 be a subgroup in H, whose (isomorphic) image in H acts
transitively on the point set of H. Then G has two orbits, Π1 and Π2 on
the point set of H with lengths 15 and 30, respectively. The points in Π1

together with the lines contained in Π1 form a subgeometry inH isomorphic
to G and the image of Π1 in the hexacode module forms a spanning set.
These facts can be checked by a direct calculation in the hexacode module
and also follow from (4.2.6) and (4.3.2) below. 2

The next lemma shows that the universal representation group of G is
infinite.

Lemma 3.9.3 The universal representation group of G(Alt5) is infinite.

Proof. The points and lines of G = G(Alt5) are the edges and vertices of
the Petersen graph with the natural incidence relation. Take the standard
picture of the Petersen graph and let H be the set of 5 edges which join
the external pentagon with the internal star. Then it is easy to see that H
is a geometrical hyperplane whose complement consists of two connected
components - the pentagon and the star. Now the result is immediate from
(2.3.6). 2

Recall that if G is a P -geometry of rank n ≥ 2 then the derived graph
∆ = ∆(G) has Gn as the set of vertices and two such vertices are adjacent
if they are incident in G to a common element of type n − 1 (the derived
graph explains the term vertices for the elements of type n and the term
links for the elements of type n − 1. The vertices and links incident to a
given element u of type n − 2 in G form a Petersen subgraph ∆[u] in ∆.
The derived system D = D(G) of G is the point-line incidence system (Π, L)
whose points are the elements of type n (the vertices) and a triple of such
elements form a line if they are incident to a common element u of type
n − 2 and are the neighbours of a vertex in the Petersen subgraph ∆[u].
A representation group of D is called a derived group of G. In the case
of G = G(Alt5) the points of D are the vertices of the Petersen graph ∆
and the lines are the sets ∆(x) taken for all the vertices x in ∆. Let Vo
be the orthogonal module of O−4 (2) ∼= Sym5 which is also the heart of the
permutational GF (2)-module on a set Σ of size 5. Then Vo is 4-dimensional
irreducible module for Sym5 called the orthogonal module. The group Sym5

acts on the set of non-zero vectors in Vo with two orbits of length 5 and
10 indexed by 1- and 2-element subsets of Σ. Let ψ be the mapping from
the set of 2-element subsets of Σ (the points of D) into Vp which commutes
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with the action of Sym5. It is easy to check that (Vo, ψ) is the universal
representation of D which gives the following.

Lemma 3.9.4 The universal representation group of D(G(Alt5)) is the or-
thogonal module Vo for Sym5. 2

3.10 G(3[n2 ]2 · S2n(2))

Let G̃ = G(3[n2 ]2 ·S2n(2)), n ≥ 3, so that G̃ is a T -geometry of rank n with the

automorphism group G̃ ∼= 3[n2 ]2 · S2n(2). Let χ : G̃ → G be the morphism
of geometries where G = G(S2n(2)). We can identify the elements of G
with the E-orbits on G̃, where E = O3(G̃) and then χ sends an element

of G̃ onto the E-orbit containing this element. Clearly the morphism χ
commutes with the action of G̃ and G ∼= S2n(2) is the action induced by G̃
on G (which is the full automorphism group of G).

Let (U,ϕa) be the universal abelian representation of G̃. Then

U = Uz ⊕ U c = CU (E)⊕ [U,E].

By (2.4.1) and (3.6.2) Uz is the (2n + 1)-dimensional orthogonal module
for G ∼= S2n(2) ∼= Ω2n+1(2). In this section we prove the following.

Proposition 3.10.1 In the above terms U c, as a GF (2)-module for G̃, is
induced from the unique 2-dimensional irreducible GF (2)-module of

3[n2 ]2 .Ω−2n(2).2 < G̃.

In particular dimU c = 2n(2n − 1).

Within the proof of the above proposition we will see that the universal
representation group of G̃ is infinite.

Let us recall some basic properties of G̃ and G (cf. Chapter 6 in [Iv99]).
Concerning G we follow the notation introduced in Section 3.5, so that
V is the natural symplectic module of G, Ψ is the symplectic form on V
preserved by G and Q = Q+ ∪ Q− is the set of quadratic forms on V
associated with Ψ. For f ∈ Qε (where ε ∈ {+,−}) let O(f) ∼= Oε2n(2) be
the stabilizer of f in G and Ω(f) ∼= Ωε2n(2) be the commutator subgroup of
O(f).

Let v be a point of G (which is a 1-dimensional subspace of V identified
with its unique non-zero vector). Let G(v) ∼= 22n−1 : S2n−2(2) be the
stabilizer of v in G, K(v) = O2(G(v)) be the kernel of the action of G(v)
on resG(v) and R(v) be the centre of G(v) which is the kernel of the action
of G(v) on the set of points collinear to v. The subgroup R(v) is of order
2 generated by the element

τ(v) : u 7→ u+ Ψ(u, v)v,

which is the transvection of V with centre v and axis v⊥ (the orthogonal
complement of v with respect to Ψ). The following result is rather standard
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Lemma 3.10.2 Let v be a point of G and f ∈ Q. Then the following
assertions hold:

(i) CV (τ(v)) = v⊥;

(ii) if f(v) = 0 then τ(v) 6∈ O(f);

(iii) if f(v) = 1 then τ(v) ∈ O(f) \ Ω(f).

Proof. The group G induces a rank 3 action on the point-set of G.
Since τ(v) is in the centre of G(v) and fixes every point in v⊥, it must act
fixed-point freely on V \ v⊥ and hence we have (i). Let u be a point of G.
If u ∈ v⊥ then uτ(v) = u and hence f(uτ(v)) = f(u); if u ∈ V \ v⊥, then

f(uτ(v)) = f(u+ v) = f(u) + f(v) + Ψ(v, u).

Since in this case Ψ(v, u) = 1, the equality f(uτ(v)) = f(u) holds if and only
if f(v) = 1. By (i) dimCV (τ(v)) = 2n + 1 (which is an odd number) but
we know (cf. p. xii in [CCNPW]) that an element g ∈ O(f) is contained in
Ω(f) if and only if dimCV (g) is even. Hence we have (ii) and (iii). 2

Let ṽ be a point of G̃ such that χ(ṽ) = v and G̃(ṽ) be the stabilizer

of ṽ in G̃. Then G̃(ṽ) induces the full automorphism group of resG̃(ṽ) and

K̃(ṽ) = O2(G̃(ṽ)) is the kernel of the action. The natural homomorphism

of G̃ onto G induced by the morphism χ maps K̃(ṽ) isomorphically onto

K(v). In particular the centre of K̃(ṽ) is generated by the unique element

τ̃(ṽ). Let R̃(ṽ) be the subgroup in G̃ generated by τ̃(ṽ).

Lemma 3.10.3 The following assertion holds:

(i) R̃(ṽ) is the kernel of the action of G̃(ṽ) on the set of points collinear
to ṽ;

(ii) if ũ is a point collinear to ṽ then [τ̃(ṽ), τ̃(ũ)] = 1.

Proof. Since K̃(ṽ) stabilizes every line incident to ṽ, the morphism χ

commutes with the action of G̃ and τ(v) fixes every point collinear to v, (i)

follows. Since R̃(ũ) is a characteristic subgroup of G̃(ṽ), (ii) follows from
(i). 2

Recall that G̃ is a subgroup in the semidirect product Ĝ = W : G,
where W is an elementary abelian 3-group which (as a GF (3)-module for
G) is induced from a non-trivial 1-dimensional module Wf of the subgroup
O(f) of G, where f ∈ Q−. This means that the elements of Ω(f) centralize
Wf and the elements from O(f) \Ω(f) act by negation. Thus W possesses
a direct sum decomposition

W =
⊕
f∈Q−

Wf .

The group G permutes the direct summands in the natural (doubly transi-
tive) way.
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For a form f ∈ Q− let Õ(f) be the full preimage of O(f) in G̃ (with re-

spect to the natural homomorphism). Let Ô(f) = W : O(f) be a subgroup

of Ĝ (where O(f) is treated as a subgroup of the complement G to W ). It
is clear that

W bfc :=
⊕

g∈Q−,g 6=f

Wg

is a subgroup of index 3 in W normalized by O(f) while N̂bfc = W bfc :

Ω(f) is a normal subgroup of index 6 in Ô(f) and the corresponding factor
group is isomorphic to Sym3. The next statement follows directly from the
definitions.

Lemma 3.10.4 Ñbfc := N̂bfc ∩ Õ(f) is a normal subgroup in Õ(f) and

Dbfc := Õ(f)/Ñbfc ∼= Sym3.

2

Let ξ denote the natural homomorphism of Õ(f) onto Dbfc. Let e be
the identity element and i1, i2, i3 be the involutions in Dbfc. We define a

mapping % of the point-set of G̃ onto {e, i1, i2, i3} by the following rule

%(ṽ) =

{
e if τ̃(ṽ) 6∈ Õ(f);
ξ(τ̃(ṽ)) otherwise.

Lemma 3.10.5 The following assertions hold:

(i) %−1(e) is a geometrical hyperplane H̃(f) in G̃;

(ii) for α ∈ {1, 2, 3} the set %−1(iα) is a union of connected components of

the subgraph in the collinearity graph of G̃ induced by the complement
of H̃(f).

Proof. Notice first that by (3.10.2) if τ(ṽ) ∈ Õ(f) we have ξ(τ̃(ṽ)) = iα
for α ∈ {1, 2, 3}. Let l̃ = {ṽ, ũ, w̃} be a line in G̃ and l = {v, u, w} be its
image under χ. Then {0, v, u, w} is an isotropic subspace in V . Hence
f is zero on exactly one or on all three points in l. In the former case
τ̃(p̃) 6∈ Õ(f) for every p̃ ∈ l̃ and l̃ is in %−1(e). In the latter case exactly

one of the points of l̃ (say ṽ) is in %−1(e) and hence (i) follows. Also in the
latter case we have ξ(τ̃(ũ)) = iα and ξ(τ̃(w̃)) = iβ . Since [τ̃(ũ), τ̃(w̃)] = 1
by (3.10.3 (ii)), we have α = β, which gives (ii). 2

Now by (2.3.6) and (3.10.5) we have the following

Lemma 3.10.6 Let F = F (f) be the group freely generated by the involu-
tions i1, i2 and i3 and let e be the identity element of F . Then (F, %) is a

Õ(f)-admissible representation of G̃, in particular the universal represen-

tation group of G̃ is infinite. 2
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Let F be the quotient of F as (3.10.6) over the commutator subgroup
of F . Then F is elementary abelian of order 23 and it is the quotient of the
universal representation module U of G̃. Furthermore CF (E) is of order 2
and it is the quotient of Uz, while

Ubfc := F (f)/CF (f)(E)

is a 2-dimensional quotient of U c.

Lemma 3.10.7 Let U0 be the direct sum of the representation modules
Ubfc taken for all f ∈ Q−. Then U0 is a representation module of G̃ of
dimension 2n(2n − 1).

Proof. We can define a mapping %0 from the point-set of G̃ into U0

applying the construction similar to that after the proof of (2.3.2), so that
the line relations hold. It is easy to see that the kernels of E acting on
the Ubfc are pairwise different which implies that U0 is an irreducible

G̃-module. Hence U0 is generated by the image of %0. 2

The above lemma gives a lower bound on the dimension of U c. We
complete the proof of (3.10.1) by establishing the upper bound using the
technique of Section 2.4. We are going to show that in the considered situ-
ation the condition (M) from Section 2.4 holds and describe the acceptable
hyperplanes in G. Towards this end we need a better understanding of the
structure of E as a GF (3)-module for G(v) ∼= 22n−1 : S2n−2(2).

As above let ṽ be a point of G̃ such that χ(ṽ) = v and E(ṽ) be the
stabilizer of ṽ in E. The next lemma summarizes what we have observed
above.

Lemma 3.10.8 The following assertions hold:

(i) the subgroup E(ṽ) is independent on the particular choice of ṽ ∈
χ−1(v) (and hence will be denoted by E(v));

(ii) the subgroup E(v) is of order 3[n−1
2 ]2 and it coincides with O3 of the

action of G̃(ṽ) on resG̃(ṽ) ∼= G(3[n−1
2 ]2 · S2n−2(2));

(iii) E(v) ≤ CE(K(v)). 2

We have observed in Section 3.5 that K(v) = O2(G(v)) is elementary
abelian isomorphic to the orthogonal module of G(v)/K(v) ∼= S2n−2(2) ∼=
Ω2n−1(2). Hence (3.5.1) implies that G(v) has three orbits, Hp, H+ and
H− on the setH of hyperplanes (subgroups of index 2) in K(v) with lengths

22n−2 − 1, 2n−2(2n−1 + 1), 2n−2(2n−1 − 1),

respectively.
On the other hand, since K(v) is a 2-group,

E = CE(K(v))⊕ [E,K(v)]
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and every non-trivial irreducible K(v)-submodule in E is 1-dimensional
contained in [E,K(v)] with kernel being a hyperplane in K(v). Let EH be
the sum of the irreducibles for which H is the kernel. It is clear that dim EH
is independent on the choice of H from its G(v)-orbit. Hence we have the
following decomposition

[E,K(v)] =
⊕
H∈H

EH .

Since dimCE(K(v)) ≥ dimE(v) = [n−1
2 ]2 by (3.10.8 (iii)), we conclude that

dim [E,K(v)] is at most [n2 ]2− [n−1
2 ]2 = 2n−2(2n−1−1) which is exactly the

length of the shortest G(v)-orbit on H. This gives the following.

Lemma 3.10.9 The following assertions hold:

(i) E(v) = CE(K(v));

(ii) [E,K(v)] possesses the direct sum decomposition

[E,K(v)] =
⊕
H∈H−

EH ,

where H− is the G(v)-orbit on the hyperplanes in K(v) indexed by
the quadratic forms of minus type and dim EH = 1;

(iii) G(v) induces on the set of direct summands in (ii) the doubly transi-
tive action of G(v)/K(v) ∼= S2n−2(2) on the cosets of O−2n−2(2);

(iv) the element τ(v) negates EH for every H ∈ H−, so that E(v) =
CE(τ(v)).

Proof. The assertions (i) - (iii) follow from the equality of upper and
lower bounds on dim [E,K(v)] deduced before the lemma. Since τ(v) is in
the centre of G(v) and the latter acts transitively on H−, it is clear that
τ(v) acts on all the EH in the same way. Since τ(v) can not centralize the
whole E, (iv) follows. 2

In order to establish the condition (M) we need the following lemma.

Lemma 3.10.10 Let {v, u, w} be a line in G. Then

(i) the images of τ(u) and τ(w) in G(v)/K(v) are non-trivial and equal;

(ii) E(u) ∩ E(w) ≤ E(v).

Proof. It is immediate from (3.10.3 (ii)) that [τ(v), τ(u)] = 1 and
hence τ(u) ∈ G(v) (similarly for w). It is easy to deduce directly from
the definition of the transvections τ(u) and τ(w) that they induce the same
non-trivial action on resG(v) which gives (i). By (3.10.9 (iv)) E(v)∩E(u) =
CE(v)(τ(u)) and E(v) ∩ E(w) = CE(v)(τ(w)). Since K(v) commutes with
E(v), in view of (i), we have E(v) ∩ E(u) = E(v) ∩ E(w). By the obvious
symmetry, the intersections are also equal to E(u) ∩ E(w) and hence (ii)
follows. 2
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Lemma 3.10.11 In the considered situation the condition (M) holds.

Proof. Put I = H− (which is the G(v)-orbit on the set of hyperplanes
in K(v) indexed by the quadratic forms of minus type) and for i ∈ I let
Bi be the image in E/E(v) of the subspace Ei as in (3.10.9 (ii)). Then
the Bi are 1-dimensional and G(v) permutes them doubly transitively by
(3.10.9 (iii)). Thus in order to show that the graph Θ in the condition
(M) is connected, it is sufficient to show that it has at least one edge. Let
{v, u, w} be a line in G. Then by (3.10.9 (iv)) and (3.10.10) E(u) 6= E(v)
and therefore τ(u) has on I an orbit {i, j} of length 2. By (3.10.10 (i)) the
action of τ(w) on I coincides with that of τ(u) and hence {i, j} is also a
τ(w)-orbit. Put Bij = 〈Bi, Bj〉 and let Bu and Bw be the centralisers in
Bij of τ(u) and τ(w), respectively. Then Bu and Bw are contained in the
images in E/E(v) of E(u) and E(w), respectively and Bu 6= Bw by (3.10.10
(ii)). Since clearly {Bu, Bw} ∩ {Bi, Bj} = ∅, (M) holds. 2

Now we are going to complete the proof of (3.10.1) by showing that U0

as in (3.10.3) is the whole U c. Since the condition (M) holds by (3.10.11) we
have to bound the number of acceptable hyperplanes. First of all since U0 is
a non-trivial quotient of U c, there are acceptable hyperplanes. By noticing
that the dimension of U0 is twice the length of the shortest G-orbit on
the set of geometrical hyperplanes in G, we conclude that (in the notation
of (3.5.2)) the hyperplanes H(f) for f ∈ Q− are acceptable. Since the
universal representation group of G is finite by (3.5.4), (2.4.8) applies and
shows that dimU c is at most twice the number of acceptable hyperplanes
in G. Hence it remains to prove the following.

Lemma 3.10.12 Let H be a geometrical hyperplane in G, such that either
H = H(f) for f ∈ Q+ of H = H(v) for a point v of G. Then H is not
acceptable.

Proof. Suppose that H is acceptable. Then by (2.4.6 (i)) the subgroups
E(u) taken for all points u of G outside H generate a subgroup Y (H) of
index 3 in E. It is clear that Y (H) is normalized by the stabilizer G(H) of
H in G. We know by Lemma 6.7.3 in [Iv99] that E (as a GF (3)-module for
G) is self-dual. Hence G(H) must normalize in E a 1-dimensional subspace
(which is the dual of Y (H)).

Let x be an element of type n in G, so that x is a maximal totally
isotropic (which means n-dimensional) subspace in V . Its stabilizer G(x) ∼=
2n(n+1)/2 : Ln(2) acts monomially on E (cf. Lemma 6.8.1 in [Iv99]). More
specifically O2(G(x)) preserves the direct sum decomposition

E =
⊕
α∈L2

Tα.

Here L2 is the set of 2-dimensional subspaces of x and every Tα is
a 1-dimensional non-trivial module for O2(G(x)). The factor group
G(x)/O2(G(x)) ∼= Ln(2) permutes the direct summands in the natural way
(in particular the action is primitive). The kernels of the action of O2(G(x))
on different Tα are pairwise different, in particular G(x) acts irreducibly on
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E. We are going to show that G(H,x) := G(H)∩G(x) does not normalize
1-subspaces in E.

Let H = H(f) for f ∈ Q+. Then without loss of generality we
can assume that x is totally singular with respect to f , in which case
G(H,x) ∼= 2n(n−1)/2 : Ln(2). Since G(H,x)O2(G(x)) = G(x), we conclude
that G(H,x) acts primitively on the set of direct summands Tα. Hence the
kernels of the action of O2(H,x) on different Tα are different and G(H,x)
still acts irreducibly on E, particularly it does not normalize 1-subspaces
in E.

Finally let H = H(v) where v is a point and we assume that v is
contained in x. Then G(H,x) = G(v)∩G(x) contains O2(G(x)) and has two
orbits L2

1(v) and L2
2(v) on L2 with length [n−1

1 ]2 and [n2 ]2− [n−1
1 ]2 consisting

of the 2-subspaces in x containing v and disjoint from v, respectively. Since
n ≥ 3, each orbit contain more than one element. Then E, as a module for
G(H,x), is the direct sum of two irreducible submodules⊕

α∈L2
1(v)

Tα and
⊕

α∈L2
2(v)

Tα,

each of dimension more than 1 and hence again G(H,x) does not normalize
1-subspaces in E. 2
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Chapter 4

Mathieu groups and Held
group

Let (P,B) be a Steiner system of type S(5, 8, 24), where P is a set of 24
elements and B is a set of 759 8-element subsets of P called octads such
that every 5-element subsets of P is in a unique octad. Such a system
is unique up to isomorphism and its automorphism group is the sporadic
Mathieu group M24. The octads from B generate in the power space 2P

of P a 12-dimensional subspace C12 called the Golay code . The empty
set and the whole set P form a 1-dimensional subspace in C12 and the
corresponding quotient C11 is an irreducible GF (2)-module for M24. The
quotient C12 = 2P/C12 (equivalently the dual of C12) is the Todd module . It
contains a codimension 1 submodule C11 which is dual to C11 (C11 is called
the irreducible Todd module ). The stabilizer in M24 of an element p ∈ P is
the Mathieu group M23 and the stabilizer of an ordered pair (p, q) of such
points is the Mathieu group M22. The setwise stabilizer of {p, q} is the
automorphism group AutM22 of M22. The irreducible Todd module C11

restricted to AutM22 is an indecomposable extension of a 10-dimensional
Todd module C10 for AutM22 by a 1-dimensional submodule. Recall that
a trio is a partition of P into three octads and a sextet is a partition of P
into six 4-element subsets (called tetrads) such that the union of any two
such tetrads is an octad.

4.1 G(M23)

For the rank 4 P -geometry G = G(M23) the universal representation group
is trivial. Indeed, the point set of G is P \ {p} for an element p ∈ P and
the automorphism group G ∼= M23 of G acts triply transitively on the set of
points. Hence every 3-element subset of points is a line which immediately
implies the following result.

Proposition 4.1.1 The universal representation group of G(M23) is triv-
ial. 2

65
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Since the representation group of G(M23) is trivial, the geometry does
not possess flag-transitive affine c-extensions but there exists a non-affine
flag-transitive c-extension having M24 as the automorphism group (2.7.5).

4.2 G(M22)

If {p, q} is a 2-element subset of P then the points of the rank 3 P -geometry
G = G(M22) are the sextets which contain p and q in the same tetrad.
Since every tetrad is contained in a unique sextet the set of points can be
identified with the set of 2-element subsets of Q := P \ {p, q}. If B is an
octad containing {p, q} then the 6-element subset H := B \ {p, q} is called
a hexad. There are 77 hexads which define on Q the structure of a Steiner
system S(3, 6, 22), in particular, every 3-element subset of Q is in a unique
hexad. In these terms a triple of points of G is a line if and only if the union
of these points is a hexad. Then the automorphism group G ∼= AutM22

of G is the setwise stabilizer of {p, q} in the automorphism group of (P,B)
isomorphic to M24. The octads from B disjoint from {p, q} are called octets.
The octets are the elements of type 3 in G(M22).

From the action of Co2 on the rank 4 P -geometry geometry G(Co2)
containing G(M22) as a point residue, one observes that the 10-dimensional
Todd module is a representation module of G. Let x = {a, b} be a 2-
element subset of Q (a point of G) and ψ(x) be the image in C11 of the
subset {p, q, a, b} of P.

Lemma 4.2.1 (C11, ψ) is an abelian representation of G(M22).

Proof. Let {x1, x2, x3} be a line in G, where xi = {ai, bi} for
1 ≤ i ≤ 3. Then ψ(x1) + ψ(x2) + ψ(x3) is the image in C11 of the set
{p, q, a1, b1, a2, b2, a3, b3} which is an octad and hence the image is zero. 2

We will show that (C11, ψ) is the universal representation of G. First
we show that if (V, χ) is the universal abelian representation of G, then the
dimension of V is at most 11.

Let H be a hexad. It follows directly from the definitions that the points
and lines contained in H form a subgeometry S in G isomorphic to G(S4(2))
(cf. Lemma 3.4.4 in [Iv99]).

Lemma 4.2.2 Let (V, χ) be the universal abelian representation of G(M22)
and H be a hexad. Then

(i) the subspace V [H] in V generated by the vectors χ(x) taken for all
points x contained in H is a quotient of the universal representation
module V (G(S4(2)) of G(S4(2));

(ii) for every element r ∈ H the vectors χ({r, s}) taken for all s ∈ H \{r}
generate in V [H] a subspace of codimension at most 1 and∑

s∈H\{r}

χ({r, s}) = 0.
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Proof. (i) follows from (2.1.2), (3.4.4) and the paragraph before the
lemma while (ii) is implied by a property of V (G(S4(2)). 2

Notice that in C11 the images of all the pairs contained in a hexad
generate a 5-dimensional subspace.

Let r ∈ Q, R = Q \ {r} and L be the set of hexads containing r
(equivalently the octads containing {p, q, r}). Then by the basic property
of the Steiner system S(5, 8, 24) we observe that with respect to the natural
incidence relation Π = (R,L) is a projective plane over GF (4).

Lemma 4.2.3 Let V brc be the submodule in V generated by the vectors
χ({r, s}) taken for all s ∈ R. Then the dimension of V brc is at most 11.

Proof. Let L be the stabilizer of r in G. Then L ∼= PΣL3(4) acts dou-
bly transitively on R. Thus V brc is a quotient of the GF (2)-permutational
module of L acting on the set of points of Π. Furthermore by (4.2.2 (ii)) the
sum of points on a line is zero. Now the result follows from the structure
of the permutational module given in (3.1.4). 2

Proposition 4.2.4 In the above terms V = V brc, in particular, dim V =
11 and V ∼= C11.

Proof. Suppose that V 6= V brc and put V = V/V brc. Since every
point of G is contained in a hexad containing r, V (H) is not contained in
V brc for some hexad H containing r. Since V brc is normalized by L and
L acts (doubly) transitively of the set L of hexads containing r, the image
of V (H) in V is non-trivial for every hexad H containing r. By (4.2.2 (ii))
this image is 1-dimensional. Let i(H) denote the unique non-zero vector in
this image. By considering a hexad which does not contain r we can find a
triple H1, H2, H3 of hexads containing r such that

i(H1) + i(H2) + i(H3) = 0.

Since L acts doubly transitively on the set of 21 hexads containing r, this

implies that V
#

= {i(H) | r ∈ H} which is not possible since 21 is not a
power of 2 minus one. 2

Proposition 4.2.5 (C11, ψ) is the universal representation of G(M22).

Proof. By (4.2.4) all we have to show is that if (R,χ) is the universal
representation of G then R is abelian. Let Γ be the collinearity graph of
G = G(M22) whose suborbit diagram is the following:
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2(x)
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2(x)

Recall that y ∈ Γ \ {x} is contained, respectively, in Γ(x), Γ1
2(x) and

Γ2
2(x) if x, y are disjoint contained in a hexad, intersect in one element,

and are disjoint, not in a hexad (here x and y are considered as 2-element
subsets of Q).

We apply (2.3.7) for B(x) = Γ2
2(x) and A(x) = Γ \ B(x). Since the

action of G ∼= AutM22 on Γ is primitive and the lengths of the suborbits
are pairwise different, the graph Ξ is connected. Let us show that Σx is
connected. For a hexad H let Γ[H] be the subgraph in Γ induced by the
points contained in H. Then Γ[H] is the collinearity graph of G(S4(2)).
Let x = {a, b} and H be a hexad which contains a and does not contain
b. Since any two hexads intersect in at most 2 elements, it is easy to see
that the intersection Γ[H] ∩ Γ2

2(x) is of size 10 (the pairs contained in H
and disjoint from a) and the subgraph in Σx induced by the intersection is
isomorphic to the Petersen graph. Since the hexads form the Steiner system
S(3, 6, 22), for every z ∈ Γ2

2 there is a unique hexad which contains a and
z (this hexad does not contain b). Hence the subgraphs induced by the
subsets Γ[H]∩Γ2

2(x) taken for all hexads containing a and not containing b
form a partition of Γ2

2(x) into 16 disjoint Petersen subgraphs. In a similar
way the hexads containing b and not containing a define another partition
of Γ2

2(x) into 16 disjoint Petersen subgraphs. Furthermore, two Petersen
subgraphs from different partitions intersect in at most one point. Hence
every connected component of Σx contains at least 100 = 10× 10 vertices.
Since G(x) acts transitively on Γ2

2(x) and a connected component is an
imprimitivity block, we conclude that Σx is connected. By (3.4.4) for a
hexad H the points contained in H generate in R an abelian group (of
order at most 25). Since whenever y ∈ A(x) there is a hexad containing
x and y, all the assumptions of (2.3.7) are satisfied and the commutator
subgroup of R has order at most 2. By (4.2.4), (2.3.8) and (2.3.9) if R
is non-abelian, G acting of C11 preserves a non-zero symplectic form. On
the other hand, C11 as a module for G is indecomposable with irreducible
factors of dimension 1 and 10 (cf. Lemma 2.15.3 in [Iv99]) which shows
that there is no such form. Hence R is abelian and the result follows. 2

Let (V, ϕ) be the universal representation group of G, so that V ∼= C11.
Let x be a point of G. We will need some information of the structure of
V as a module for G(x) ∼= 25.Sym5. Put G(x) = G(x)/O2(G(x)) ∼= Sym5.
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and follow notation introduced in Section 2.1.

Lemma 4.2.6 The following assertions hold:

(i) V 1(x) is the universal representation module for resG(x) ∼= G(Alt5),
in particular dim V 1(x) = 6;

(ii) V2(x) = V [Γ1
2(x)] = V [Γ2

2(x)];

(iii) V 2(x) is the 4-dimensional orthogonal module for G(x) (with orbits
on non-zero vectors of lengths 5 and 10.) 2

Notice that in (4.2.6) the module V 2(x) is isomorphic to the derived
group of resG(x) ∼= G(Alt5) (compare (3.9.4)).

4.3 G(M24)

Considering the action of Co1 on the rank 4 T -geometry G(Co1) we ob-
serve that C11 is a representation group of G = G(M24). Let (R,ϕ) be
the universal representation of G. Recall that the points of G are the sex-
tets. For a 2-element subset {p, q} of P the sextets containing {p, q} in a
tetrad induce a subgeometry F(p, q) isomorphic to G(M22) (the lines and
planes in the subgeometry are those of G contained in the point set of
F(p, q)). By (4.2.5) the image ϕ(F(p, q)) of the points from the subgeom-
etry F(p, q) in R is abelian of order at most 211 isomorphic to a quotient
of C11. Let S = {p, q, r} be a 3-element subset of P. Then the intersection
F(p, q) ∩ F(q, r) is of size 21 consisting of the sextets containing S in a
tetrad. By (4.2.4) ϕ(F(p, q)) is generated by ϕ(F(p, q) ∩ F(q, r)) which
immediately shows that ϕ(F(p, q)) = ϕ(F(q, r)). Since the graph on the
set of 2-element subsets of P in which two such subsets are adjacent if their
union is a 3-element subset, is connected, we conclude that R = ϕ(F(p, q)),
which gives the following.

Proposition 4.3.1 The group R(G(M24)) is abelian isomorphic to the ir-
reducible Todd module C11. 2

We will need some further properties of C11 as a representation group of
G. Let x ∈ Π, G(x) ∼= 26.3 ·S4(2) be the stabilizer of x in G ∼= M24 and let
Γ be the collinearity graph of G. Let (V, ϕ) be the universal representation
of G (where V ∼= C11 by (4.3.1)). The following result is immediate from
the structure of V as a module for G(x) (cf. Section 3.8 in [Iv99]).

Lemma 4.3.2 Let G(x) = G(x)/O2(G(x)) ∼= 3 ·S4(2). Then the following
assertions hold:

(i) V 1(x) is isomorphic to the hexacode module for G(x);

(ii) V2(x) = V [Γ2
2(x)] = V [Γ1

2(x)] and V 2(x) is isomorphic to the 4-
dimensional symplectic module of G(x)/O3(G(x)) ∼= S4(2). 2
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4.4 G(3 ·M22)

Let G = G(3 ·M22), G = AutG ∼= 3 · AutM22, E = O3(G), S = (Π, L) be
the point-line incidence system of G and S∗ be the enrichment of S with
respect to E. Recall that the quotient G of G with respect to the action
of E is isomorphic to G(M22). The point set of G is the set of 2-element
subsets of Q = P \ {p, q}. In this subsection we determine the universal
representation module of G and the universal representation group of S∗.
We do not know what is the universal representation group of G and even
whether or not it is finite.

Let (V, ϕ) be the universal abelian representation of G. In terms of
Subsection 2.4 V = V z ⊕ V c. By (2.4.1) V z is the universal representation
module of G(M22) (isomorphic to C11 by (4.2.4)) and by (2.4.3) V c is the
universal representation module of S∗. Hence to achieve our goal it is
sufficient to calculate the universal representation group R∗ of S∗, since V c

is the quotient of R∗ over its commutator subgroup.

Lemma 4.4.1 R∗ possesses a G-invariant factor group isomorphic Q ∼=
21+12

+ .

Proof. Consider the action of J ∼= J4 on the rank 4 P -geometry
J = G(J4) and let x be a point of J . Then resJ (x) ∼= G, J(x) ∼= 21+12

+ .G.
Furthermore Q := O2(J(x)) is the kernel of the action of J(x) on resJ (x)
and Z(Q) is the kernel of the action of J(x) on the set of points collinear
to x. A Sylow 3-subgroup of O2,3(J(x)) maps onto E under the homomor-
phism of J(x) onto G and we will denote such a Sylow 3-subgroup also by
E. Then E acts fixed-point freely on Q := Q/Z(Q) and hence the latter is
a quotient of R∗. We claim that Q is itself a quotient of R∗.

Let G̃ = NJ(x)(E). Then G̃/Z(Q) ∼= G (in fact G̃ does not split over

Z(Q)). Let χ be the mapping of Π into Q which turns the latter into a
representation module of G. Let Φ be the set of all preimages in Q of the
involutions from χ(Π). We claim that G̃ acting of Φ has two orbits. Let T
be a E-orbit on the point set Π of G. Then χ(T ) is an elementary abelian
group of order 22, the set U of elements in Φ which map into χ(T ) is of
size 6. Furthermore, E acting on U has two orbits (say U1 and U2) of size
3 each and U generates in Q an elementary abelian subgroup W of order
23. It is easy to see that W = 〈Ui〉 for exactly one i ∈ {1, 2}. This means

that the images of U1 and U2 under G̃ form two different orbits of G̃ on Φ
and the claim follows. Applying (2.8.1) we obtain the result. 2

Proposition 4.4.2 The universal representation module V c of the en-
riched point-line incidence system S∗ is 12-dimensional isomorphic to
Q = Q/Z(Q).

Proof. (A few lemmas will be formulated within the proof). The fixed-
point free action of E on V c turns the latter into a GF (4)-vector space, so
that the representation of S∗ in V c induces a mapping ν of the point set Π
of G into the set of 1-dimensional GF (4)-subspaces in V c. Throughout the
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proof the dimensions of V c and its subspaces are GF (4)-dimensions. By
(4.4.1) all we have to show is that dimV c ≤ 6. If H is a hexad, then the
preimages of the points from Π contained in H form in G a subgeometry
isomorphic to G(3 · S4(2)) and hence by (3.8.1) and the fact that 3 · S4(2)
acts irreducibly on the hexacode module, we obtain the following, where
V c(H) is the subspace in V c generated by the images under ν of the points
contained in H.

Lemma 4.4.3 dimV c(H) = 3. 2

Notice that the set of 1-dimensional subspaces ν(x) for x ∈ H are equal
to the set of 15 points outside a hyperoval in the projective GF (4)-space
associated with V c(H). From the basic properties of the projective GF (4)-
space (cf. Section 2.7 in [Iv99]) we deduce the following.

Lemma 4.4.4 Let x, y be different points contained in a hexad H and let
W be the 2-dimensional subspace of V c(H) generated by ν(x) and ν(y).
Let m be the number of 1-dimensional subspaces in W of the form ν(z) for
z ∈ H. Then m = 5 if |x ∩ y| = 1 and m = 3 if x and y are disjoint. 2

Let r ∈ Q and V cbrc be the subspace in V c generated by the images
under ν of the 2-element subsets in Q (points of G) from the set

∆ = {{r, s} | s ∈ Q \ {r}}.

Let x, y be different points from ∆ and H be the unique hexad containing
x and y. Since x ∩ y = {r}, by (4.4.4) every 1-dimensional subspace in the
2-dimensional subspace of V c(H) generated by ν(x) and ν(y) is of the form
ν(z) for some z ∈ ∆. Hence every 1-dimensional subspace in V cbrc is of
the form ν(z) for some z ∈ ∆ and we have the following.

Lemma 4.4.5 dimV cbrc = 3. 2

Let V
c

= V c/V cbrc. For a hexad H containing r the image V
c
(H) in V

c

of V c(H) is 1-dimensional and it is easy to see that for s ∈ Q\{r} the image
in V

c
of V c(s) is 2-dimensional, and every 1-dimensional subspace in this

image is of the form V
c
(H) for a hexad containing r and s (there are exactly

5 such hexads). Since the stabilizer of r in G acts doubly transitively on the
21 subspaces V

c
(H) taken for all the hexads H containing r, we conclude

that these are all 1-dimensional subspaces in V
c
. Hence dimV

c
= 3 and in

view of (4.4.5) this completes the proof of Proposition 4.4.2. 2

Proposition 4.4.6 Let (R∗, ϕ) be the universal representation of the en-
riched point-line incidence system of G(3 ·M22). Then R∗ ∼= 21+12

+ .

Proof. By (4.4.1) and (4.4.2) all we have to show is that the commu-
tator subgroup of R∗ has order at most 2. We apply (2.3.7). The suborbit
diagram of the collinearity graph Γ of G(3 ·M22) with respect to 3 ·AutM22

is the following
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We put B(x) = Γ2
3(x) and A(x) = Π \ B(x). Let x0 = x, {x1, x2} =

Γ1
4(x). Since {x0, x1, x2} is the only imprimitivity block of G on the vertex

set of Γ which contains x, the graph Ξ is connected. Our next goal is
to show that Σx is connected. It is easy to see from the above suborbit
diagram that

Γ2
3(x) = Γ2

2(x1) ∪ Γ2
2(x2).

Furthermore, E permutes the sets Γ2
2(xi) for i = 0, 1, 2 fixed-point freely.

Hence there is a line {z0, z1, z2} in S∗ (an orbit of E), such that zi ∈ Γ2
2(xi),

0 ≤ i ≤ 2. Thus it is sufficient to show that the subgraph in Σx induced
by Γ2

2(x1) is connected. For a hexad H the set Ω(H) of the preimages in G
of the points from G contained in H induces a subgeometry isomorphic to
G(3·S4(2)). By (3.8.2) the elements ϕ(y) taken for all y ∈ Ω(H) generate in
R∗ an elementary abelian subgroup of order 26 isomorphic to the hexacode
module for G[Ω(H)]/O2(Ω(H)) ∼= 3·S4(2). Let x = {a, b} ⊂ Q be the image
of x in G. If H is a hexad which contains a and does not contain b then
comparing the proofs of (4.2.5) and (3.8.4) one can see that Ω(H)∩Γ1

2(x) is
of size 15 while for every 0 ≤ i ≤ 2 the intersection Ω(H)∩Γ2

2(xi) is of size
10 and induces a Petersen subgraph. Now arguing as in the proof of (4.2.5)
we conclude that the subgraph in Σx induced by Γ2

2(x1) is connected.
Let us show that ϕ(x) commutes with ϕ(y) for every y ∈ A(x). If

y ∈ Γ1
i (x) for 0 ≤ i ≤ 4 then there is a hexad H such that x, y ∈ Ω(H) and

in this case the conclusion follows from the previous paragraph. Let R∗1(x)
be the subgroup generated by the elements ϕ(u) taken for all u ∈ Γ1

1(x) and

R
∗
1(x) = R∗1(x)/ϕ(x). We claim that R

∗
1(x) is abelian. By (2.6.2) R

∗
1(x) is

a representation group of H = resG(x) ∼= G(Alt5). Since the representation
group of H is infinite, we need some additional conditions. Recall that the
points of H are the edges of the Petersen graph and two such edges are
collinear if they have a common vertex. If H is a hexad containing x then
the lines of G contained in Ω(H) and containing x correspond to a triple
of antipodal edges in the Petersen graph associated with H. By (3.8.3) the
product of images in R∗1(x) of these antipodal edges is the identity. On
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the other hand, if we adjoin to the line set of H the five antipodal triple
of edges, we obtain the geometry G(S4(2)). Thus R

∗
1(x) is a representation

group of G(S4(2)) and it is abelian by (3.4.4), so the claim follows. The
suborbit diagram shows that there are 3 paths of length 2 joining a vertex
y ∈ Γ2

2(x) with x. Since R
∗
1(x) is abelian, by (2.2.3) [ϕ(x), ϕ(y)] = 1 which

completes the proof. 2

As an immediate consequence of the above proof we have the following.

Corollary 4.4.7 Let (R∗, ϕ) be the universal representation of the enriched
point-line system of G = G(3 ·M22) (where R∗ ∼= 21+12

+ ) and r be the non-
identity element in the centre of R∗. Then for points x, y of G we have
[ϕ(x), ϕ(y)] = r if y ∈ Γ2

3(x) and [ϕ(x), ϕ(y)] = 1 otherwise. 2

Let x be a point of G. We will need some information of the structure of
V c as a module for G(x) ∼= 25.Sym5. Put G(x) = G(x)/O2(G(x)) ∼= Sym5.

Lemma 4.4.8 The module V c possesses a unique composition series of
G(x)-submodules:

V (1) < V (2) < V (3) < V (4) < V (5) < V c,

where V (1) = ϕc(x), V (2) = V c[Γ1
4(x)]; V (3) = V c[Γ1

1(x)]; V (4) =
V c[Γ1

2(x)] = V c[Γ1
3(x)]; V (5) = V c[Γ2

2(x)]. Furthermore

(i) V (1), V (2)/V (1), V (5)/V (4) and V c/V (5) are 1-dimensional;

(ii) V (3)/V (2) and V (4)/V (3) are isomorphic to the natural (4-dimensional
irreducible) module for G(x);

(iii) V (5)/V (3) is isomorphic to the indecomposable extension of the natu-
ral module by 1-dimensional module and it is dual to V (3)/V (1).

Proof. Since V c is a factor group of R∗ ∼= 21+12
+ there is a G-invariant

quadratic form q on V c. Let H be a hexad. We know that V c[Ω(H)] is
isomorphic to the hexacode module Vh for S/O2(S) ∼= 3 · S4(2) where S
is the stabilizer of Ω(H) in G. Since S/O2(S) does not preserve a non-
zero quadratic form on Vh, V c[Ω(H)] is a maximal isotropic subspace with
respect to q. Let f be the bilinear form associated with q. The proof of
(4.4.6) in view of (2.3.8) shows that for y ∈ Π we have f(ϕc(x), ϕc(y)) 6= 0 if
and only if y ∈ Γ2

3(x), V c[Π \Γ2
3(x)] has codimension 1 in V c. This implies

that V c[∪4
i=0Γ1

i (x)] has codimension 2 in V c and by the above this is the
perp of V c[{x} ∪ Γ1

4(x)]. By the proof of (4.4.6) V c[Γ1
1(x)] has dimension

at most 6. If the dimension is 5 then

V c[Γ1
1(x)]# = {ϕc(y) | y ∈ {x} ∪ Γ1

1(x)}

which is certainly impossible. Now the result is straightforward. 2

The following information can be found in [J76] or deduced directly.
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Lemma 4.4.9 Let (Q,ϕa) be the universal abelian representation of G(3 ·
M22) as in (4.4.2). Then G = 3 ·AutM22 has exactly there orbits, Q1, Q2

and Q3 on the set of non-identity elements of Q, where Q1 = Im ϕ is of
size 693, Q2 is of size 1386 and Q3 is of size 2016. In particular a Sylow
2-subgroup of G fixes a unique non-zero vector in Q and this fixed vector is
in Q1. 2

4.5 D(M22)

Let G = M22, G = G(G) be the P -geometry of M22, and ∆ = ∆(G) be the
derived graph of G. Then the action of M22 on ∆ is distance-transitive and
the intersection diagram is the following:

��
��
��
��
��
��
��
��
��
��

1 7 42 168 112

2 2 1

7 1 6 1 4 1 4 6

Let D = D(M22) be the derived system of G. Recall that the points
of D are the vertices of ∆ and a triple {u, v, w} of such vertices is a line
if there is a Petersen subgraph Σ in ∆ (an element of type 2 in G) and a
vertex x ∈ Σ such that {u, v, w} = Σ(x) (the set of neighbours of x in Σ).

Let (D, δ) be the universal representation of D. As usual for a subset Λ
of the vertex set of ∆

D[Λ] = 〈δ(z) | z ∈ Λ〉.

Lemma 4.5.1 Let C10 be the 10-dimensional Golay code module (which is
an irreducible GF (2)-module for M22). Then (C10, χ) is a representation of
D for a suitable mapping χ.

Proof. The vertices of ∆ (which are the points of D) are the octets
(the octads of the S(5, 8, 24)-Steiner system disjoint from the pair {p, q} of
points involved in the definition of G(M22)) and two octets are adjacent if
they are disjoint. The module C10 can be defined as the subspace in the
power space of P \ {p, q} generated by the octets. Let S = {T1, T2, ...., T6}
be a sextet such that {p, q} ∈ T1. Then for 2 ≤ i < j ≤ 6 the union Ti ∪ Tj
is an octet and all the 10 octets arising in this way induce in ∆ a Petersen
subgraph Σ. Let x be a vertex of Σ, say x = T2 ∪ T3. Then

u = T4 ∪ T5, v = T4 ∪ T6, w = T5 ∪ T6

are the neighbours of x in Σ. Since C10 is a subspace in the power space,
the addition is performed by the symmetric difference operator and hence

u+ v + w = 0,

which means that C10 is a representation group of D. 2

We are going to show that C10 is the universal representation group of
D. First we recall some known properties of ∆. If Σ is a Petersen subgraph
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in ∆ and x ∈ ∆ then the type of Σ with respect to x is the sequence
(t0, t1, t2, t3, t4), where tj = |Σ ∩ ∆j(x)| for 0 ≤ j ≤ 4. The next two
lemmas are easy to deduce from the diagram on p. 137 in [Iv99].

Lemma 4.5.2 For x ∈ ∆ the subgroup G(x) ∼= 23 : L3(2) acts transitively
on the set of Petersen subgraphs in ∆ of a given type with respect to x.
Furthermore, if Σ is a Petersen subgraph and O is the orbit of Σ under
G(x), then one of the following holds:

(i) Σ is of type (1, 3, 6, 0, 0) and |O| = 7;

(ii) Σ is of type (0, 1, 3, 6, 0) and |O| = 28;

(iii) Σ is of type (0, 0, 2, 4, 4), |O| = 84 and a vertex from Σ ∩ ∆4(x) is
adjacent to 2 vertices from Σ ∩∆3(x);

(iv) Σ is of type (0, 0, 0, 6, 4), |O| = 112 and a vertex from Σ ∩ ∆3(x) is
adjacent to 2 vertices from Σ ∩∆4(x). 2

Lemma 4.5.3 Let H be a hexad and S = (Π, L) be the incidence system,
such that Π consists of the edges {x, y} of ∆ such that the sum of x and y
in C10 is the complement of H and L are the non-empty intersections of Π
with Petersen subgraphs in ∆. Then

(i) every line in L is of size 3 and form an antipodal triple of edges in a
Petersen subgraph;

(ii) S is isomorphic to the generalized quadrangle G(S4(2)) of order (2, 2);

(iii) for an edge {x, y} ∈ Π the set Π contains 6 edges in ∆2(x) ∩∆2(y)
and 8 edges in ∆4(x) ∩∆4(y). 2

Lemma 4.5.4 Let Σ be a Petersen subgraph in ∆, let

{{xi, yi} | 1 ≤ i ≤ 3}

be an antipodal triple of edges in Σ and Ξ be the set of vertices on these
three edges. Then D[Ξ] is elementary abelian of order 23 and the product
δ(xi)δ(yi) is independent of the choice of i ∈ {1, 2, 3}.

Proof. The statement can be deduced from (3.9.4) by means of ele-
mentary calculations. 2

Lemma 4.5.5 For x ∈ ∆ the equality D[∆3(x)] = D[∆4(x)] holds.

Proof. Let Σ be a Petersen subgraph of type (0, 0, 0, 6, 4) and u ∈
Σ ∩ ∆3(x). By (4.5.2 (iv)) u is adjacent to 2 vertices in Σ ∩ ∆4(x), say
to y and z. Then if v is the unique vertex from Σ ∩ ∆3(x) adjacent to
u then δ(v) = δ(y)δ(z) which implies the inclusion D[∆3(x)] ≤ D[∆4(x)].
The inverse inclusion can be established similarly by considering a Petersen
subgraph of type (0, 0, 2, 4, 4). 2
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Lemma 4.5.6 In notation of (4.5.3) let Θ be the set of 30 vertices incident
to the edges from Π. Then D[Θ] is abelian of order at most 26.

Proof. Let d = δ(x)δ(y) for an edge {x, y} ∈ Π. Then by (4.5.4) and
(4.5.3) d is independent on the particular choice of the edge. Let

ε : {x, y} 7→ 〈δ(x), δ(y)〉/〈d〉.

By the definition and (4.5.4) (D[Θ]/〈d〉]) is a representation of S. By (3.4.4)
D[Θ]/〈d〉 is elementary abelian of order at most 25. Hence the commutator
subgroup of D[Θ] is contained in 〈d〉. We claim that the commutator sub-
group is trivial. Indeed, consider the representation (C10, χ) as in (4.5.1)
and let ψ be the homomorphism of D onto C10 such that χ is the compo-
sition of δ and ψ. Since C10 is abelian, in order to prove the claim it is
sufficient to show that ψ(d) is not the identity. But this is clear since the
images under χ of two adjacent vertices are different. Hence the result. 2

Lemma 4.5.7 D is abelian.

Proof. For x, y ∈ ∆ we have to show that δ(x) and δ(y) commute.
If d∆(x, y) ≤ 2 then x and y are in a common Petersen subgraph and
the commutativity follows from (3.9.4); if d∆(x, y) = 4 then by (4.5.3) x
and y are contained in a set Θ as in (4.5.6) and the commutativity follows
from that lemma. Finally by (4.5.5) we have D[∆3(x)] ≤ D[∆4(x)] which
completes the proof. 2

Now we are ready to prove the main result of the section. As usual for
a vertex x ∈ ∆ and 0 ≤ i ≤ 4 put

Di(x) = 〈δ(y) | d∆(s, y) ≤ i〉,

Di(x) = Di(x)/Di−1(x) for i ≥ 1.

Proposition 4.5.8 The universal representation group of the derived sys-
tem of G(M22) is abelian of order 210 isomorphic to the M22-irreducible
Golay code module C10. 2

Proof. In view of (4.5.1) it is sufficient to show that the order of D
is at most 210. We fix x ∈ ∆ and consider the Di(x) as GF (2)-modules of
G(x) ∼= 23 : L3(2). Let π denote the residue resG(x) which is the projective
plane of order 2 whose points are the edges incident to x and the lines are
the Petersen subgraphs containing x.

Step 0. dimD0(x) ≤ 1.

Step 1. dimD1(x) ≤ 3.

The set ∆(x) is of size 7 and the lines of D contained in this set turn
it into the point set of the projective plane π. Now the result is immediate
from (3.1.2).

Step 2. dimD2(x) ≤ 3.
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For a Petersen subgraph Σ of type (1, 3, 6, 0, 0) the image of D[Σ] in
D2(x) is 1-dimensional. There are 7 subgraphs of this type and hence
there are 7 such images which clearly generate the whole D2(x) and are
naturally permuted by G(x)/Q(x) ∼= L3(2). Now a Petersen subgraph of
type (0, 1, 3, 6, 0) turns D2(x) into a representation module of the dual of
π. Hence the claim is again from (3.1.2).

Step 3. dimD3(x) ≤ 3.

By the previous step we see that the image in Ds(x) of D2[y] for
y ∈ ∆(x) is at most 1-dimensional and these images generate the whole
section. Now a Petersen subgraph of type (0, 0, 0, 6, 4) provide U3(x) with
a structure of a representation module for a triple system and we apply
(3.1.2) once again.

Step 4. D4(x) ≤ D3(x).

This is an immediate consequence of (4.5.5). 2

As a consequence of the proof of (4.5.8) we obtain the following.

Corollary 4.5.9 Let (D, δ) be the universal representation group of the
derived system of G(M22) and x ∈ ∆. Then D = D3(x) while D2(x) is of
order 27. 2

Since Sym5 acts primitively on the vertex-set of the Petersen graph, it
is easy to deduce from (4.5.8) the following.

Corollary 4.5.10 Let U be a quotient of the GF (2)-permutational module
of M22 acting on the 330 vertices of the derived graph ∆(G(M22)) such that
the vertices of the Petersen subgraph generate a 4-dimensional subspace.
Then U is isomorphic to the 10-dimensional Golay code module C10.

4.6 G(He)

It was shown in [MSm82] that the rank 3 T -geometry G(He) associated with
the Held sporadic simple group possesses a natural representation in an
irreducible 51-dimensional GF (2)-module for He (which is the restriction
modulo 2 of an irreducible module over complex numbers for He). It has
been check by B. McKay (private communication) on a computer that the
dimV (G(He)) is 52. Thus in view of (2.1.1) we have the following result.

Proposition 4.6.1 the universal representation module V (G(He)), as a
GF (2)-module for He is an indecomposable extension of a 51-dimension
irreducible He-module by a 1-dimensional submodule. 2



78 CHAPTER 4. MATHIEU GROUPS AND HELD GROUP



Chapter 5

Conway groups

The tilde geometry G(Co1) of the first Conway group, the Petersen geom-
etry G(Co2) of the second Conway group and the c-extended dual polar
space G(3 · U4(3)) possess representations in 24-, 23- and 12-dimensional

sections of Λ
(24)

(the Leech lattice taken modulo 2). We show that in the
former two cases the representations are universal (cf. Propositions 5.2.3,
5.3.2, and 5.4.1). In the latter case the extension of the 12-dimensional
representation module to an extraspecial group supports the universal rep-
resentation of the enriched point-line system of G(3 ·U4(3)) (cf. Proposition
5.6.5, which was originally proved in [Rich99]). In Section 5.5 it is shown
that G(323 ·Co2) does not possess faithful abelian representations (the ques-
tion about non-abelian ones is still open).

5.1 Leech lattice

The rank 4 T -geometry G(Co1) and its P -subgeometry G(Co2) are best
defined in terms of the Leech lattice Λ. In this section we recall some basic
facts about Λ.

Let (P,B) be the Steiner system S(5, 8, 24). This means that P is a set
of 24 elements and B is a collection of 759 8-subsets of P (called octads)
such that every 5-subset of P is in a unique octad. Such system is unique up
to isomorphism and its automorphism group is the Mathieu group M24. Let
C12 be the Golay code which is the (12-dimensional) subspace in the power
space of P generated by the octads. Let R24 be the space of all functions
from P into the real numbers (a 24-dimensional real vector space). For
λ ∈ R24 and a ∈ P we denote by λa the value of λ on a. Let ea be the
characteristic function of a (equal to 1 on a and 0 everywhere else). Then
E = {ea | a ∈ P} is a basis of R24 and {λa | a ∈ P} are the coordinates of
λ ∈ R24 in this basis.

Let Λ be the set of vectors λ = {λa | a ∈ P} in R24, satisfying the
following three conditions for m = 0 or 1.

(Λ1) λa = m mod 2 for every a ∈ P;

79
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(Λ2) {a | λa = m mod 4} ∈ C12;

(Λ3)
∑
a∈P λa = 4m mod 8.

Define the inner product ( , ) of λ, ν ∈ Λ to be

(λ, ν) =
1

8

∑
a∈P

λaνa.

Then Λ is an even unimodular lattice of dimension 24 without roots (vec-
tors of length 2). The lattice Λ is determined by these properties up to
isomorphism and it is the Leech lattice . The automorphism group of Λ
(preserving the origin) is Co0

∼= 2 · Co1 which is the extension of the first
sporadic group of Conway by its Schur multiplier.

It is common to denote by Λi the set of Leech vectors (vectors in Λ) of
length 2i:

Λi = {λ | λ ∈ Λ,
1

16

∑
a∈P

λ2
a = i}.

Then Λ0 consists of the zero vector and Λ1 is empty since there are no roots
in Λ.

Let Λ = Λ/2Λ be the Leech lattice modulo 2, which carries the struc-

ture of a 24-dimensional GF (2)-space. We sometimes write Λ
(24)

for Λ to
emphasize the dimension. The automorphism group of Λ induces on Λ the
group G ∼= Co1. For a subset M of Λ by M we denote the image of M in
Λ. The following result is well known

Proposition 5.1.1 The following assertion hold:

(i) Λ = Λ0 ∪ Λ2 ∪ Λ3 ∪ Λ4 (disjoint union);

(ii) if i = 2 or 3 then an element from Λi has exactly two preimages in
Λi which differ by sign;

(iii) an element from Λ4 has exactly 48 preimages in Λ4;

(iv) G ∼= Co1 acts transitively on Λ2, Λ3 and Λ4 with stabilizers isomor-
phic to Co2, Co3 and 211 : M24, respectively;

(v) the GF (2)-valued function θ on Λ which is 1 on the elements from
Λ3 and 0 everywhere else is the only non-zero G-invariant quadratic
form on Λ. 2

Let Γ be the Leech graph which is a unique graph of valency 2 · 1771 on
Λ4, which is invariant under the action of G on this set. Then the suborbit
diagram of Γ is the following:
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Γ(x)

Γ1
2(x) Γ1

3(x)

Γ2
3(x)

{x}

Γ2
2(x)

The graph Γ is the collinearity graph of the geometry G(Co1). The lines
can be defined as follows. If x is a vertex of Γ and G(x) ∼= 211 : M24 is
the stabilizer of x in G, then Γ(x) is the union of the orbits of length 2 of
Q(x) = O2(G(x)) on Γ (this can be used for an alternative definition of Γ).
If {y, z} is such an orbit, then T = {x, y, z} is a line (observe that every
edge is contained in a unique line). If we treat the points in T as elements
of Λ4, then the equality x + y + z = 0 holds. Since Λ is generated by Λ4,
we have the following

Lemma 5.1.2 The (Λ, ϕ) , (where ϕ is the identity mapping) is a repre-
sentation of G(Co1). 2

We will show below that the representation in the above lemma is uni-
versal.

In order to deal with representations of G(Co1) we only need the point-
line incidence system of the geometry but for the sake of completeness
we recall how the remaining elements can be defined. A clique (complete
subgraph) Ξ in Γ is said to be ∗-closed if together with every edge it contains
the unique line containing this edge. Then lines are precisely the ∗-closed
cliques of size 3; elements of type 3 in G(Co1) are the ∗-closed cliques of size
7 and the elements of type 4 is one of two G-orbits on the set of ∗-closed
cliques of size 15. The diagram of G(Co1) is

2
◦

2
◦

2
◦ ∼

2
◦.

Let u ∈ Λ2, F ∼= Co2 be the stabilizer of u in G and for j = 2, 3 and 4
let

Θ(j) = {x ∈ Λ4 | x+ u ∈ Λj}.

Lemma 5.1.3 The sets Θ(j), j = 2, 3 and 4 are the orbits of F on Λ4

(which is the vertex set of Γ) and the corresponding stabilizers are isomor-
phic to 210 : AutM22, M23 and 25 : 24 : L4(2), respectively. 2
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Let F is the subgeometry in G = G(Co1) formed by the elements con-
tained in Θ(2). Then F ∼= G(Co2) is a geometry with the diagram

2
◦

2
◦

2
◦ P

1
◦

and F induces on F a flag-transitive action.
The points of F generate in Λ the orthogonal complement u⊥ of the vec-

tor u ∈ Λ2 involved in the definition of F with respect to the Co1-invariant
quadratic form θ as in (5.1.1 (iv)). Considered as a GF (2)-module for F the

subspace u⊥ of Λ = Λ will be denoted by Λ
(23)

; it is an indecomposable ex-

tension of an irreducible 22-dimensional F -module Λ
(22)

by a 1-dimensional
submodule.

Let Θ denote the subgraph in Γ induced by Θ(2). The suborbit diagram
of Θ with respect to the action of F is the following:
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#
#
#
#
#
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1 2 · 231 210 · 22

25 · 77

26 · 330

462 1

1+60
80

15

320

7

240

28

15

7+28+168

192

21 21+210

224

210{x} Θ(x)

Θ1
2(x)

Θ2
2(x)

Θ3(x)

æ

5.2 G(Co2)

In this section we show that Λ
(23)

is the universal representation module of
F = G(Co2). We will make use of G(S6(2))-subgeometries in F described
in the following lemma (compare Lemma 4.9.8 in [Iv99]).

Lemma 5.2.1 Let x ∈ Θ and y ∈ Θ1
2(x). Then x and y are contained in a

unique subgraph Ξ in Θ isomorphic to the collinearity graph of the geometry
G(S6(2)) which is a subgeometry in G formed by the elements contained in
Ξ. The stabilizer of Ξ in F ∼= Co2 is of the form 21+8

+ .S6(2) and it contains
O2(F (x)). 2

We will also need the following result (where the vertices of Θ are treated
as vectors from Λ).
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Lemma 5.2.2 Let x ∈ Θ, then

(i) the intersection of Θ with the orthogonal complement x⊥ of x with
respect to the Co1-invariant quadratic form θ is Θ \Θ3(x);

(ii) a line of F which intersects Θ3(x) intersects it in exactly two points;

(iii) the subgraph in Θ induced by Θ3(x) is connected.

Proof. (i) follows from the definition of θ and the table on p. 176 in
[Iv99]. Since a line is the set of non-zero vectors of 2-subspace in Λ, (ii)
follows directly from (i). To establish (iii) recall that for z ∈ Θ3(x) we
have F (x, z) ∼= PΣL3(4). Suppose that the subgraph induced by Θ3(x) is
disconnected, let Υ be the connected component containing z and H is the
set-wise stabiliser of Υ in F (x). Since F (x) acts transitively on Θ3(x), H
acts transitively on Υ and

PΣL3(4) ∼= F (x, z) < H < F (x) ∼= 210 : AutM22.

Clearly |Υ| := [F (x) : H] = n1 · n2 where

n1 = 210/|O2(F (x)) ∩H|, and n2 = [F (x) : HO2(F (x))].

Since F (x, z)O2(F (x)) is a maximal subgroup in F (x) of index 22 and
F (x)/O2(F (x)) acts irreducibly on O2(F (x)) of order 210, we conclude that
[F (x) : H] is at least 22 and hence Υ contains at most |Θ3(x)|/22 = 210

vertices. On the other hand from the suborbit diagram of Θ we observe that
(a) the valency of Υ is 231; (b) every edge of Υ is in at most 61 triangles
and (c) any two vertices at distance 2 in Υ are joined by at most 15 paths
of length 2. This shows that

|Υ| ≥ |{z}|+ |Υ(z)|+ |Υ2(z)| ≥ 1 + 231 + 231 · (230− 61)/15 > 2834,

which contradicts the upper bound, we have established earlier. 2

Proposition 5.2.3 Let (V, ϕa) be the universal abelian representation of
F = G(Co2), x ∈ Θ be a point and H = resG(x) ∼= G(M22). Then

(i) dim V0(x) = 1;

(ii) V 1(x) is either V (H) (which is the 11-dimensional Todd module C11)
or the quotient of V (H) over a 1-dimensional submodule;

(iii) V 2(x) is V (D(H)) (which is the 10-dimensional Golay code module
C10);

(iv) dim V 3(x) ≤ 1;

(v) V is isomorphic to the Co2-submodule Λ
(23)

in the Leech lattice taken
modulo 2.
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Proof. We know that (V, ϕ) is non-trivial (of dimension at least 23)
and F -admissible. Then (i) is obvious, (ii) follows from (2.6.3) and (4.2.4).

Now let us turn to V 2(x). In order to establish the statement we will

prove three claims. Let V
j

2(x) be the subspace in V 2(x) generated by the
cosets ϕa(y)V1(x) taken for all y ∈ Θj

2(x), where j = 1 or 2.

Claim 1. V 2(x) = V
1

2(x) = V
2

2(x).

Let z ∈ Θ(x), Υ be the collinearity graph of resF (z) ∼= G(M22) and let
lx denote the vertex of Υ containing x (this is the line of F containing x
and z). Then W := V1(z)/V0(z) is a quotient of the 11-dimensional Todd
module C11. The image of V1(z) in V 2(x) is a quotient of W 2(lx) (where
the latter is defined with respect to the graph Υ). Comparing the suborbit
diagrams of Θ (in the previous section) and Υ (in Section 4.2), we observe
that if y ∈ Θj

2(x), then the line ly of F which contains z and y is in Υj
2(lx)

for j = 1 and 2. Hence the claim follows from (4.2.6 (ii)).

Claim 2. O2(F (x)) centralizes V 2(x).

Let Ξ be the subgraph in Θ isomorphic to the collinearity graph of
G(S6(2)) as in (5.2.1) which contains x. Then by (3.5.3) the image V 2[Ξ] of
V [Ξ] in V 2(x) is at most 1-dimensional and since O2(F (x)) stabilizes Ξ, it
centralizes V 2[Ξ]. By (5.2.1) the images V 2[Ξ] taken for all such subgraphs

Ξ containing x generate V
1

2(x) which is the whole V 2(x) by Claim 1.

Claim 3. V 2(x) is as in (iii).

By Claims 1, 2 and in view of the suborbit diagram of Θ we observe

that V 2(x) = V
2

2(x) is generated by 330 elements indexed by the orbits
of O2(F (x)) on Θ2

2(x). On the other hand by Lemma 4.9.5 in [Iv99] these
orbits are indexed by the octets of the Steiner system S(3, 6, 22) in terms
of which resF (x) is defined. Since (V, ϕa) is universal abelian, it is F -
admissible and hence in view of the above V 2(x) is a quotient of the GF (2)-
permutational module of F (x)/O2(F (x)) ∼= AutM22 acting on the set of
octets (the vertex set of the derived graph). As above let z ∈ Θ(x). Then
in view of the diagram on p. 138 in [Iv99] we observe that Θ(z)∩Θ2

2(x) in-
tersects exactly 10 orbits of O2(F (x)) on Θ2

2(x) and these orbits correspond
to the vertex-set of a Petersen subgraph in the derived graph of resF (x).
By (4.2.6 (ii)) the 10 elements corresponding to these orbits generate in
V 2(x) a quotient of a 4-dimensional submodule with respect to F (x, z).
Then (4.5.10) applies and gives the claim.

In view of (2.1.3) (iv) follows now from (5.2.2 (ii), (iii)). Since the
diameter of Θ is three by the above we observe that the dimension of V is
at most 23. Since we know that F possesses a 23-dimensional representation

in Λ
(23)

(v) follows. 2

Thus a Co2-admissible representation module of G(Co2) is isomorphic

either to Λ
(23)

or to Λ
(22)

.

The Co2-orbits on Λ
(23)

are listed in [Wil89]. This list shows that the

only orbit of odd length of the non-zero vectors in Λ
(22)

is Im ψ where
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(Λ
(22)

, ψ) is a representation of G(Co2). The suborbit diagram of Θ shows
that all the non-diagonal orbitals have even length which gives the following.

Corollary 5.2.4 A Sylow 2-subgroup of Co2 fixes a unique vector non-zero

v in Λ
(22)

an a unique hyperplane which is the orthogonal complement of
v with respect to the form induced by β. Furthermore v is the image of a

point of G(Co2) under the mapping which turns Λ
(22)

into a representation
module of the geometry. 2

5.3 G(Co1)

We look closer at the subgraphs induced in Γ by the orbits of F ∼= Co2 and
at the adjacencies between vertices in different orbits.

Lemma 5.3.1 The orbit diagram of the Leech graph Γ with respect to the
orbits of F ∼= Co2 is the following:

"!
# 

"!
# 

"!
# 

Θ(2) Θ(4) Θ(3)

462

3080 35

35+1680

1792 1771

1771

210 : AutM22 25 : 24 : L4(2) M23

Furthermore a line of G(Co1) which intersects Θ(3) intersects it in exactly
two points and the subgraph induced by Θ(3) is connected.

Proof. For x ∈ Γ let S(x) be the Steiner system of type S(5, 8, 24) in
terms of which the residue resG(x) ∼= G(M24) is defined. In particular the
points of resG(x) (which are the lines of G containing x) are the sextets of
S(x). The stabilizer G(x) ∼= 211 : M24 induces the automorphism group of
S(x) with kernel K(x) = O2(G(x)).

For xj ∈ Θ(j) we are interested in the orbits of F (xj) on Γ(xj)
for j = 2, 3, 4. We know (5.1.3) that F (x2) ∼= 210 : AutM22. Then
F (x2)Q(x2)/Q(x2) is the stabilizer in M24 = AutS(x2) of a pair of el-
ements, say {p, q}. Then from the structure of a sextet stabilizer (cf.
Lemma 2.10.2 in [Iv99]) we observe that F (x2) has two orbits on the set of
lines containing x2 with lengths 231 and 1540 corresponding to the sextets
in which {p, q} intersects one and two tetrads, respectively. Furthermore
F (x2)∩Q(x2) is a hyperplane in Q(x2) which is not the point-wise stabilizer
of a line containing x2. Hence F (x2) has two orbits on Γ(x2) with lengths
462 and 3080. From the suborbit diagram of Θ we see that the 462-orbit is
in Θ(2) and by the divisibility condition the 3080-orbit is in Θ(4).

By Lemma 4.4.1 in [Iv99] F (x4)Q(x4)/Q(x4) is the stabilizer of an octad
in AutS(x4). Hence by the diagram on p. 125 in [Iv99] the orbits of F (x4)
on the sextets of S(x4) are of length 35, 840 and 896. It is easy to see that
F (x4)∩Q(x4) (which is of order 25 fixes point-wise exactly 35 lines through
x4. So the orbits of F (x4) on Γ(x4) are of lengths 35, 35, 1680 and 1792.
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Finally F (x3) ∼= M23 permutes transitively the 1771 lines through x3.
Since Γ is connected in view of the above paragraph and the divisibility
condition we conclude that every line though x3 has one point in Θ(4)

and two in Θ(3). Since F (x2) ∼= M23 is a maximal subgroup in F ∼= Co2

(cf. [CCNPW] and references therein) the subgraph induced by Θ(3) is
connected. 2

Proposition 5.3.2 The Leech lattice Λ = Λ
(24)

taken modulo 2 is the uni-
versal representation module of G(Co1).

Proof. Let (V, ϕa) be the universal abelian representation of G =
G(Co1). Since we know that G possesses a representation in Λ, all we have
to show is that V is at most 24-dimensional. We consider the decomposition
of Γ into the orbits of F ∼= Co2. It follows from the definition of F ∼= G(Co2)
that V [Θ(2)] supports a representation of F and hence it is at most 23-
dimensional by (5.2.3 (v)). By (2.6.3) and (4.3.1) V 1(x2) is a quotient of
the 11-dimensional irreducible Todd module C11. Comparing (4.3.1) with
(4.2.5) or otherwise one can see that the 231 vectors in C11 corresponding
to the octads containing a given pair of elements generate the whole C11.
Hence V1(x2) is contained in V [Γ(x2) ∩ Θ(2)]. By (5.3.1) Γ(x2) contains
vertices from Θ(4) and hence V [Θ(4)] is contained in V [Θ(2)]. Consider the
quotient V = V/V [Θ(2)]. By the above V is generated by the images in
this quotient of the elements ϕa(y) for y ∈ Θ(3). But it is immediate from
the last sentence of (5.3.1) that all this images are the same, V is at most
1-dimensional and the result follows. 2

By the proof of (5.3.2) and (5.2.3 (ii)) we have the following.

Corollary 5.3.3 Let (Λ, ϕa) be the universal abelian representation of
G(Co1) and x ∈ Γ. then the subspace in Λ by the elements ϕa(y) taken
for all y ∈ {x} ∪ Γ(x) is 12-dimensional. 2

It is well known that Λ2, Λ3 and Λ4 are the orbits of Co1 on Λ
#

and
only the latter of the orbits has odd length (cf. Lemma 4.5.5 in [Iv99]).
Furthermore one can see from the suborbit diagram of the Leech graph Γ
that all the non-diagonal orbitals have even length. This gives the following

Corollary 5.3.4 A Sylow 2-subgroup of Co1 fixes a unique non-zero vector
v in Λ and a unique hyperplane which is the orthogonal complement of v
with respect to β. Furthermore, v ∈ Λ4 = Im ϕa. 2

5.4 Abelianization

In this section we complete determination of the universal representations
of the geometries G(Co2) and G(Co1) by proving the following.

Proposition 5.4.1 The universal representation groups of G(Co2) and
G(Co1) are abelian and so that by (5.2.3) and (5.3.2) they are isomorphic

to Λ
(23)

and Λ
(24)

, respectively.
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The proof of the proposition will be achieved in a few steps. We start
with the following.

Lemma 5.4.2 Let (R,ϕu) be the universal representation of G = G(Co2).
Then the order of the commutator subgroup of R is at most 2.

Proof. As above Θ denotes the collinearity graph of G. We apply
(2.3.7) for B(x) = Θ3(x) and A(x) = Θ \B(x). By (2.6.2) R1(x) supports
a representation of resG(x) ∼= G(M22), which is abelian by (4.2.5). Since
any two points at distance 2 in Θ are joined by more than one (in fact at
least 7) paths of length 2, R1(x) is abelian by (2.2.3). Since x can be any
point of G, we conclude that [ϕu(x), ϕ(y)] = 1 whenever dΘ(x, y) ≤ 2 (i.e.,
whenever y ∈ A(x)). The set B(x) = Θ3(x) is a non-trivial suborbit of the
primitive action of Co2 on the vertex set of Θ, the corresponding graph
Ξ in (2.3.7 (i)) is connected. Finally the connectivity of the graph Σx in
(2.3.7 (ii)) is by (5.2.2 (ii), (iii)). 2

We follow notation of (5.4.2). Since the representation (R,ϕu) is uni-
versal it is F -admissible and hence there is an isomorphism χ of F ∼= Co2

into the automorphism group of R. Suppose that R is non-abelian. Then
by (5.4.2) the commutator subgroup R′ of R is of order 2 and by (5.2.3)

there is an isomorphism of R/R′ onto Λ
(23)

which obviously commute with
the action of F (identified with its image under χ). In view of (2.3.8) and
(2.3.9) the power and the commutator maps in R are the restrictions to

Λ
(23)

of the quadratic form θ as in (5.1.1 (v)) and the corresponding bi-
linear map β (we denote these restrictions by the same letters θ and β).
This shows particularly that the centre Z(R) of R is elementary abelian
of order 22 and it is equal to the preimage of radical of β. Clearly F acts
trivially on Z(R). Let K be a complement in Z(R) to R′ and Q = R/K.
Then Q ∼= 21+22

+ and we can consider the semidirect product C of Q and
the image of F with respect to χ. Then

C ∼= 21+22
+ .Co2

and the structure of C resembles that of the stabilizer B1 of a point in the
action of the Baby Monster group BM on its rank 5 P -geometry G(BM).
But unlike C the point stabilizer B1 does not split over O2(P1) and this
is where we will reach a contradiction. As we will see in Part II the chief
factors of B1 do not determine B1 up to isomorphism but in either case the
extension is non-split.

Originally in the proof of Proposition 5.7 in [IPS96] for the fact of non-
splitness we referee to the result established in Corollary 8.7 in [Wil87] that
Co2 is not a subgroup of the Baby Monster. Here we present a more direct
argument suggested to us by G. Stroth.

Lemma 5.4.3 Let C ∼= 21+22
+ .Co2, Q = O2(C), C = C/O2(C) and sup-

pose C acts on Q/Z(Q) as it acts on the section Λ
(22)

of the Leech lattice
taken modulo 2. Then C does not split over Q.
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Proof. Since C preserves on Λ
(22)

a unique non-zero quadratic form
the isomorphism type of C/Z(Q) is uniquely determined as a subgroup in
the automorphism group of Q (the automorphism group is isomorphic to

222.O+
22(2)). Thus C/Z(Q) is isomorphic to the centraliser C̃ of a central

involution in the Baby Monster BM factored over the subgroup of order
2 generated by this involution. The centraliser of a 2D-involution τ in
3 · M(24) is of the form U ∼= 22 · U6(2).Sym3 and V := O∞(U) ∼= 22 ·
U6(2). If 3 ·M(24) is considered as the normaliser of a subgroup of order
3 in the Monster group M , then τ is a central involution in M and the
full preimage of U in CM (τ) is of the form D ∼= 21+2+20+2.U6(2).Sym3.
In particular, D/O2(U) ∼= 220+2 : U6(2).Sym3 and O2(D/O2(U)) is an
indecomposable U6(2)-module. By (2.8.3) this implies that all subgroups
in D/O2(U) isomorphic to U6(2) are conjugate and V is in the preimage
of one of these complements. In O2(U) there are 3 involutions of the Baby
Monster type in M and if we intersect D with the centraliser in M of
one of these three involutions, say a, we obtain the intersection of D with
2 ·BM . Factoring out the subgroup generated by a, we obtain a group E of
the form E ∼= 21+1+20+2.U6(2).2 which is the preimage in C̃ of a maximal
subgroup in C ∼= Co2 isomorphic to U6(2).2. Since U6(2) does not split

over O2(E)/Z(C̃), the result follows. 2

Thus the semidirect product of Q ∼= 21+22
+ with the action of Q/Z(Q) as

on Λ
(22)

does not exist. Thus the universal representation group of G(Co2)
is abelian and we have proved (5.4.1) for this geometry.

Now let (R,ϕu) be the universal representation of G = G(Co1). Since
the universal representation group of G(Co2) (which we treat as a subge-
ometry of G) is proved to be abelian, we know that [ϕu(x), ϕu(y)] = 1
whenever x and y are in a common G(Co2)-subgeometry. Since

Θ(x) ⊂ Γ(x), Θ1
2(x) ⊂ Γ1

2(x),

Θ2
2(x) ⊂ Γ2

2(x), Θ3(x) ⊂ Γ1
3(x),

it remains to take y ∈ Γ2
3(x) and to show that ϕu(y) commutes with ϕu(x).

Since Γ \ Γ1
3(x) is a geometrical hyperplane in G, the suborbit diagram of

Γ shows that there is a line {a, b, y} such that a, b ∈ Γ1
3(x). Since ϕu(y) =

ϕu(a)ϕu(b) the required commutativity is established and completes the
proof of (5.4.1).

5.5 G(323 · Co2)

In this section we prove the following

Proposition 5.5.1 The universal abelian representation of G(323 ·Co2) is

(Λ
(23)

, ν), where ν is the composition of the 2-covering

χ : G(323 · Co2)→ G(Co2)

and the universal (abelian) representation of F as in (5.2.3).
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We apply the technique developed in Section 2.4. Our notation here
slightly differs from that in the earlier sections of the chapter.

Let Λ be the Leech lattice, G∗ ∼= Co0
∼= 2 · Co1 be the group of auto-

morphisms of Λ preserving the origin. Put

Λ = Λ/2Λ, Λ̂ = Λ/3Λ,

so that Λ and Λ̂ are irreducible 24-dimensional G∗-modules over GF (2)
and GF (3), respectively. The group G∗ induces G ∼= Co1 on Λ and acts

faithfully on Λ̂ preserving the non-singular bilinear forms β and β̂ which
are the inner product on Λ reduced modulo 2 and 3, respectively. For λ ∈ Λ
let λ and λ̂ be the images of λ in Λ and Λ̂, respectively. We identify λ and
λ̂ with the 1-subspaces in Λ and Λ̂ they generate.

If u ∈ Λ2 then the stabilizer G∗(u) of u in G∗ is F ∼= Co2 and it maps
isomorphically onto G(u). Let

Θ = {{t,−t} | t ∈ Λ2, (u, t) = 0}.

In what follows a pair {t,−t} ∈ Θ will be represented by a single vector t
(or −t). The mapping ϕa : Θ→ Λ4 defined by

ϕa : t 7→ t+ u = t+ u

is a bijection of Θ onto the set Θ(2) defined before (5.1.3). Thus we can

treat Θ as the point-set of F = G(Co2), so that (Λ
(23)

, ϕa) is the universal

(abelian) representation of F , where Λ
(23)

is the subspace in Λ generated

by the image of ϕa. Notice that Λ
(23)

is the orthogonal complement of u
with respect to β. By (2.3.2) the geometrical hyperplanes in F are in a

bijection with the index 2 subgroups in Λ
(23)

. In their turn the index 2

subgroups correspond to the non-zero vectors of the module dual to Λ
(23)

which is isomorphic to the quotient of Λ over u. This gives the following.

Lemma 5.5.2 Let Ω be a geometrical hyperplane in F . Then there is a
vector x ∈ Λ with x 6= u, such that Ω = H2(x), where

H2(x) = {t | t ∈ Θ, (t+ u, x) = 0 mod 2}.

Furthermore H2(x) = H2(z) if and only if x = z + α · u for α ∈ {0, 1}. 2

Let F̃ = G(323 · Co2), F̃ ∼= 323 · Co2 be the automorphism group of F̃ ,

E = O3(F̃ ) and χ : F̃ → F be the corresponding 2-covering. Then the

fibers of χ are the orbits of E on F̃ . Thus we can treat the elements of F
as E-orbits on F̃ , so that χ sends an element onto its E-orbit.

The GF (3)-vector space Λ̂ as a module for F = G∗(u) ∼= Co2 is a direct
sum

Λ̂ = û⊕ Λ̂(23),

where Λ̂(23) is the orthogonal complement of û with respect to β̂ and it is
generated by the 1-subspaces t̂ taken for all t ∈ Θ. It was shown in [Sh92]

(cf. Proposition 7.4.8 in [Iv99]) that Λ̂(23) is an irreducible F -module which

is isomorphic to E. If we identify E and Λ̂(23) through this isomorphism
then we have the following
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Lemma 5.5.3 Let t̃ be a point of F̃ , t = χ(t̃) ∈ Θ. Then E(t̃) = t̂.
Thus E(t̃) is cyclic of order 3 and it depends only on the E-orbit t = χ(t̃)
containing t̃. 2

Lemma 5.5.4 Let Ξ ⊆ Θ and suppose that the elements t̂ taken for all
t ∈ Ξ generate in Λ̂(23) a proper subgroup. Then there is a vector y ∈ Λ
with (y, u) = 0 mod 3, such that Ξ ⊆ H3(y), where

H3(y) = {t | t ∈ Θ, (t, y) = 0 mod 3}.

Proof. By the assumption the set {t̂ | t ∈ Ξ} is contained in a maximal

subgroup ∆̂ (of index 3) in Λ̂(23). Since the restriction of β̂ to Λ̂(23) is non-

singular, ∆̂ is the orthogonal complement of a non-zero vector ŷ ∈ Λ̂(23)

with respect to β̂. Now the result follows by considering a suitable preimage
y of ŷ in Λ. 2

In order to simplify the calculations we are going to perform, it is con-
venient to set P = {1, 2, ..., 24}. Then E = (e1, e2, ..., e24) is a basis of R24

and for λ ∈ Λ we have

λ = λ1e1 + λ2e2 + ...+ λ24e24,

where the coordinates λi satisfy the conditions (Λ1) - (Λ3) in Section 5.1.
Choose u = 4e1 − 4e2. Then u ∈ Λ2 and F = G∗(u) ∼= Co2. The vector

v = 4e1 + 4e2 (strictly speaking the pair {v,−v}) belongs to Θ and it is
characterized by the property that the stabilizer F (v) acts monomially in
the basis E .

More specifically F (v) is the semidirect product of Q(v) ∼= O2(F (v))
and L(v) ∼= AutM22. The subgroup L(v) acts permutationally as the
setwise stabilizer of {1, 2} in the automorphism group of the S(5, 8, 24)-
Steiner system (P,B). The elements of Q(v) are indexed by the subsets
from the Golay code C12 (associated with (P,B)) disjoint from {1, 2}. If
Y ⊆ P\{1, 2} is such a subset, then the corresponding element τ(Y ) ∈ Q(v)
stabilizes ei if i 6∈ Y and negates it if i ∈ Y . Recall that Q(v) is the 10-
dimensional Golay code module for L(v).

In these terms the orbits of F (v) on Θ are specified by the shapes of
the vectors they contain (cf Lemma 4.9.5 in [Iv99]). In particular

Θ(v) = {4ei + α4ej | 3 ≤ i < j ≤ 24, α ∈ {1,−1}}

so that
{{v, 4ei + 4ej , 4ei − 4ej} | 3 ≤ i < j ≤ 24}

is the set of lines containing v.

The structure of Λ̂(23) as a module for F (v) easily follows from the above
description of F (v).

Lemma 5.5.5 As a module for F (v) ∼= 210 : AutM22 the module Λ̂(23)

possesses the direct sum decomposition

Λ̂(23) = v̂ ⊕ Λ̂(22),
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where Λ̂(22) = [Q(v), Λ̂(23)] is the orthogonal complement of v̂ with respect

to β̂. As a module for Q(v) the module Λ̂(22) possess the direct sum decom-
position

Λ̂(22) =

24⊕
i=3

T̂i,

where T̂i is generated by the image of the vector 8ei ∈ Λ and CQ(v)(T̂i) is
a hyperplane in Q(v) from the L(v)-orbit of length 22. In particular F (v)

acts monomially and irreducibly on Λ̂(22). 2

Now we proceed to prove the main result of the section. Let W be the
universal representation module of F̃ = G(323 · Co2). Then

W = W z ⊕W c, where W z = CW (E), W c = [W,E].

By (2.4.1) W z is the universal representation module of F and W z ∼= Λ
(23)

by (5.2.3). We are going to prove that W c is trivial by showing that the
condition (M) from Section 2.4 holds and that there are no acceptable
geometrical hyperplanes in F .

Lemma 5.5.6 The condition (M) from Section 2.4 holds.

Proof. In terms of (5.5.5) Λ̂(22) is the complement to v̂ = E(v) in

E = Λ̂(23), so it maps isomorphically onto its image in E/E(v). Let Bi
be the image of T̂i in E/E(v) for 3 ≤ i ≤ 24. Then the condition (M) is
immediate from (5.5.5) and the above description of the lines in F passing
through v. Notice that in this case the graph Σ in (M) is the complete
graph on 22 vertices. 2

Lemma 5.5.7 There are no acceptable hyperplanes in F .

Proof. Suppose that Ω is an acceptable hyperplane in F . Then, first
of all, it is a hyperplane and by (5.5.2) there is a non-zero vector x ∈ Λ
such that Ω = H2(x). On the other hand Ω is acceptable, which means

that the subgroups E(t) = t̂ taken for all t ∈ Θ \ Ω generate in E = Λ̂(23)

a proper subgroup. By (5.5.4) this means that there is a vector y ∈ Λ with
(y, u) = 0 mod 3 such that Θ \ Ω ⊆ H3(y). Thus we must have

Θ = H2(x) ∪H3(y)

and we will reach a contradiction by showing that this is not possible. Let
∆̂ denote the subspace in Λ̂(23) generated by the elements t̂ taken for all
t ∈ H3(y).

Since H2(x) is a proper subset of Θ (and F acts transitively on Θ) we
can assume without loss of generality that H2(x) does not contain v. This

of course means that v ∈ H3(y) and v̂ ∈ ∆̂, but also it means that

(u+ v, x) = (8e1, x) =
1

8
(8x1)
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is odd. Since x is a Leech vector, by (Λ1) we conclude that all the coordi-
nates xi of x (in the basis E) are odd. For r = 1 or 3 let

C(r) = {i | 1 ≤ i ≤ 24, xi = r mod 4}.

Then by (Λ2) the subsets C(1) and C(3) are contained in the Golay code
C12. We will consider two cases separately.

Case 1: (x, u) = 0 mod 2.

In this case t ∈ Θ is in H2(x) if and only if (t, x) is even. Furthermore,
{1, 2} intersects both C(1) and C(3). Also for 3 ≤ i < j ≤ 24 the point
ei + ej ∈ Θ(v) is contained in H2(x) if and only of {i, j} intersects both
C(1) and C(3). If {i, j, k} ⊆ C(r) for r = 1 or 3 then the points ei + ej ,
ei + ek and ej + ek are not in H2(x), hence they must be in H3(y). Since

(ei + ej) + (ei + ek)− (ej + ek) = 2ei,

we conclude that (y, 8ei) = 0 mod 3 and hence ∆̂ contains the subgroup

T̂i as in (5.5.5). The subsets C(1) and C(3) being non-empty subsets from
the Golay code contain at least 8 elements each, which shows that every
3 ≤ i ≤ 24 is contained in a triple {i, j, k} as above. Now (5.5.5) implies

that ∆̂ = Λ̂(23), which is a contradiction.

Case 2: (x, u) = 1 mod 2.

In this case t ∈ Θ is in H2(x) if and only if (t, x) is odd. For r = 1 or
3 the subset C(r) is disjoint from {1, 2}. Since the negation changes the
residue modulo 4 we can apply τ(C(r)) to x to obtain a vector with all
coordinates equal modulo 4. Then for 3 ≤ i < j ≤ 24 the point ei + ej
is contained in H2(x) while ei − ej is not and hence it is contained in
H3(y). This enables us to specify the coordinates of y modulo 3. Indeed,
since (y, u) = (y, v) = 0 mod 3, we have y1 = y2 = 0 mod 3 and since
(y, ei − ej) = 0 mod 3, the coordinates yi for 3 ≤ i ≤ 24 are all equal to

the same number ε modulo 3. Clearly ε should not be 0, otherwise ∆̂ will
be the whole Λ̂(23).

Thus the vector y is uniquely determined modulo 3Λ and hence H3(y) is
determined as well. In order to obtain the final contradiction let us assume
that {3, 4, ..., 10} is an octad. Then the vectors a = 2e3+2e3+2e5+...+2e10

and b = −2e3−2e4+2e5+...+2e10 are both in Θ2
2(v) and direct calculations

show that they are not in H3(y). Hence they must be in H2(x), i.e., (x, a) =
(x, b) = 1 mod 2. But then

(x, a− b) = (x, 4e3 + 4e4) = 0 mod 2,

which means 4e3 +4e4 is not H2(x). Since this contradicts to what we have
established in the previous paragraph, the proof is complete. 2

5.6 G(3 · U4(3))

As shown in Section 4.14 in [Iv99] the fixed vertices Φ = Φ(Xs) in the
Leech graph Γ of a particular subgroup Xs of order 3 is the point-set of
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two geometries G(3 · U4(3)) and E(3 · U4(3)) with diagrams

2
◦ ∼

2
◦

2
◦

and

2
◦

4
◦ c∗

1
◦,

respectively. The group U := CG(Xs)/Xs
∼= 3 · U4(3).22, where G ∼= Co1,

acts flag-transitively on both the geometries. Notices that for E(3 · U4(3))
our numbering of types is reverse to that in [Iv99].

The geometries G(3·U4(3)) and E(3·U4(3)) share the point-line incidence
system S = (Π, L) and hence they also share the collinearity graph Φ whose
suborbit diagram with respect to the action of U is given below.

If x is a vertex of Φ (which is also a vertex of the Leech graph Γ), then

Φ(x) ∪ Φ2
4(x) ⊆ Γ(x), Φ1

2(x) ∪ Φ3
3 ⊆ Γ1

2(x),

Φ1
3(x) ∪ Φ1

4(x) ⊆ Γ1
3(x), Φ2

3(x) ⊆ Γ2
3(x), Φ2

2(x) ⊆ Γ2
2(x).

The subgroup D = O3(U) is of order 3, it acts fixed-point freely on Φ and
the orbit containing x is {x}∪Φ2

4(x), so the above inclusions show that the
subgraph in Γ induced by Φ is the collinearity graph Φ∗ of the enriched
point-line incidence system S∗ of S.

The planes in G(3 · U4(3)) are the subgraphs in Φ isomorphic to the
collinearity graph of the rank 2 tilde geometry. Such a subgraph containing
x contains also 6, 24, 12 and 2 vertices from Φ(x), Φ2

2(x), Φ3
3(x) and Φ2

4(x),
respectively. The planes of E(3 ·U4(3)) are Schläfli subgraphs in Φ (isomor-
phic to the collinearity graph of P(Ω−6 (2))). Such a subgraph containing x
contains also 10 and 16 vertices from Φ(x) and Φ1

2(x), respectively.
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The vertices of Φ, treated as vectors in Λ4 generate a 12-dimensional
irreducible U -submodule W in Λ. The quadratic form θ as in (5.1.1 (v))
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and the corresponding bilinear form β restricted to W are non-singular and
by the above inclusions we have the following

Lemma 5.6.1 If x, y ∈ Φ, then β(x, y) 6= 0 if and only if y ∈ Φ1
3(x)∪Φ1

4(x).
2

By the above if ϕ is the identity mapping then (W,ϕ) is a representation
of the enriched system S∗. The universal abelian representation of E(3 ·
U4(3)) has been calculated in [Yos92].

Proposition 5.6.2 The 12-dimensional representation (W,ϕ) of the en-
riched system S∗ is the universal abelian one. 2

Straightforward calculations in the Golay code and Todd modules give
the following

Lemma 5.6.3 If x is a point of Φ then W [{x} ∪ Φ∗(x)] is 6-dimensional.
2

Let Q ∼= 21+12
+ be an extraspecial group in which the square and the

commutator maps are determined by the (restrictions to W of) forms θ and
β via the isomorphism

Q/Z(Q)→W.

We can embed the order 3 subgroup Xs into the parabolic C ∼= 21+24
+ .Co1

of the Monster and put Q to be the centraliser of Xs in O2(C) (compare
Lemma 5.6.1 in [Iv99]). Then arguing almost literary as in the proof of
(4.4.1) we obtain

Lemma 5.6.4 Q ∼= 21+12
+ is a 3 · U4(3)-admissible representation group of

the enriched system S∗. 2

Proposition 5.6.5 The group Q ∼= 21+12
+ in (5.6.4) is the universal repre-

sentation group of the enriched system S∗. 2

The above result was established in [Rich99] using a slight generaliza-
tion of (2.3.7). The most complicated part of the proof was to show that the
subgraph in Φ induced by Φ2

3(x) is connected. This was achieved by cum-
bersome direct calculations in the graph treated as a subgraph in the Leech
graph. We decided it is not practical to reproduce these arguments here
(unfortunately we were unable to come up with easier argument either).



Chapter 6

Involution geometries

In this chapter we consider a class of geometries which always possess non-
trivial representations. Suppose that G is a group which contains a set C
of involutions which generates G and let K be a set of elementary abelian
subgroups of order four (Kleinian four-subgroups) in G, all the non-identity
elements of which are contained in C. If we identify a subgroup from K with
the triple of involutions it contains, then (C,K) is a point-line incidence
system with three points per line (the line-set might be empty). We denote
this system by I(G, C,K) and call it an involution geometry of G. It is
clear from the definition that if i is the identity mapping, then (G, i) is a
representation of I(G, C,K). We are interested in the situation when this
representation is universal.

6.1 General methods

Let I(G, C,K) be an involution geometry of G. If K is the set of all C-pure
Kleinian four-subgroups in G (i.e., with all their involutions in C) then
instead of I(G, C,K) we simply write I(G, C). If in addition C is the set of
all involutions in G then we denote I(G, C) simply by I(G) and call it the
involution geometry of G.

Lemma 6.1.1 Let G be a group and I = I(G, C,K) be an involution ge-

ometry of G. Let G̃ be a group possessing a homomorphism ψ onto G, such
that the following conditions hold:

(i) the kernel K̃ of ψ is of odd order;

(ii) K̃ is in the centre of G̃ (particularly it is abelian);

(iii) if H̃ is a subgroup in G̃ such that ψ(H̃) = G̃, then H̃ = G̃ (equiva-

lently, for every L̃ < K̃ there is no complement to K̃/L̃ in G̃/L̃).

Then G̃ is a representation group of I.

95
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Proof. Let τ ∈ C be a point of I (an involution in G). Since by (i)

and (ii) K̃ is an odd order subgroup in the centre of G̃, the full preimage

of 〈τ〉 in G̃ is the direct product of K̃ and a group of order 2. Thus ψ−1(τ)
contains a unique involution τ̃ , say, and we put ϕ̃(τ) = τ̃ . Let {τ1, τ2, τ3}
be a line in I (the set of involutions in a subgroup l of order 22 from K).

Then ψ−1(l) is the direct product of K̃ and the Kleinian four-subgroup in

G̃, whose non-identity elements are the τ̃i for 1 ≤ i ≤ 3. Finally, since G
is generated by C, the image of ϕ̃ generates in G̃ a subgroup which maps
surjectively onto G, we conclude from (iii), that (G̃, ϕ̃) is a representation
of I and the result follows. 2

A special case of particular importance to us is when C is a conjugacy
class in G. Let I = I(G, C,K) be such an involution geometry of G, and
let (R,ϕ) be the universal representation of I. Then, by the universality
property, there is a homomorphism ψ : R→ G such that

ψ(ϕ(τ)) = τ for every τ ∈ C.

Lemma 6.1.2 In the above terms suppose that ϕ(C) is a conjugacy class
of involutions in R. Then R possesses a homomorphism onto G, whose
kernel K̃ satisfies the conditions (ii) and (iii) in (6.1.1).

Proof. Let τ1, τ2 ∈ C. Since ϕ(C) is a conjugacy class, we have

ϕ(τ1)ϕ(τ2)ϕ(τ1) = ϕ(τ3)

for some τ3 ∈ C. Applying ψ to both sides of the above equality we see that

τ1τ2τ1 = τ3,

i.e., τ3 is τ2 conjugated by τ1. We can then define the action of ϕ(τ1) on C
by the rule

ϕ(τ1) : τ2 7→ τ3 where τ3 = τ1τ2τ1.

Then ϕ(τ1) acts exactly as τ1 acts by conjugation. Hence the kernel K̂ of
the homomorphism of R onto G is in the kernel of the action of R on ϕ(C) by

conjugation and since ϕ(C) generates R, this means that K̂ is in the centre

of Ĝ. Let G̃ be the smallest subgroup in Ĝ which maps surjectively onto
G and G = R/G̃. Then G is abelian and the image of ϕ(C) is a conjugacy
class, generating G. Hence G is of order 1 or 2. The latter possibility is
impossible by (2.1.1). 2

We will generally apply the following strategy. Given an involution
geometry I = I(G, C,K) with the universal representation (R,ϕ), we try
to prove that ϕ(C) is a conjugacy class in R. When this is achieved, the
structure of R becomes very restricted since by (6.1.2) R is a non-split
central extension of G. Clearly ϕ(C) is a conjugacy class in R if and only
if for any τ1, τ2 ∈ C we have

ϕ(τ1)ϕ(τ2)ϕ(τ1) = ϕ(τ3),
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where τ3 = τ1τ2τ1 ∈ C. In particular, C must be a conjugacy class of G at
the first place.

In all examples we will deal with, C is a conjugacy class of involutions
in G and K is the set of all C-pure Kleinian four-subgroups (which is al-
ways non-empty). Then I(G, C,K) is I(G, C) or even I(G) and G is a
point-transitive automorphism group of I = I(G, C,K). Let (R,ϕ) be the
universal representation of I (which is G-admissible). By considering the
homomorphism of R onto G we observe the following.

Lemma 6.1.3 Whenever ϕ(τ)ϕ(σ)ϕ(τ) ∈ ϕ(C) for τ, σ ∈ C, the equality
ϕ(τ)ϕ(σ)ϕ(τ) = ϕ(τστ) holds. 2

For τ ∈ C put

N (τ) = {σ ∈ C | ϕ(τ)ϕ(σ)ϕ(τ) = ϕ(τστ)}.

We will be gradually showing for more and more points from C that they
are contained in N (τ) until we show that C contains all the points which
means (in view of point-transitivity) that ϕ(C) is a conjugacy class in R
and (6.1.2) applies. We will make use of the following result.

Lemma 6.1.4 Let I = I(G, C,K) be an involution geometry of G, where
C is a conjugacy class, and let (R,ϕ) be the universal representation of I.
Suppose that τ, σ ∈ C are such that at least one of the following holds:

(i) τ and σ are contained in a common Kleinian four-subgroup from K;

(ii) there is a subgroup H in G containing τ and σ which is generated
by H ∩ C and the universal representation (Q,χ) of J := I(H,H ∩
C, H ∩ K) is such that χ(H ∩ C) is a conjugacy class in Q;

(iii) there is a subset ∆ ⊂ C containing σ such that the subgroup in R
generated by the elements ϕ(δ) taken for all δ ∈ ∆ is generated by
such elements taken for all δ ∈ ∆ ∩N (τ).

Then σ ∈ N (τ).

Proof. In case (i) it is clear that the images of σ and τ in R com-
mute and σ ∈ N (τ). In case (ii) the restriction of ϕ to H ∩ C in-
duces a representation map for J and hence by the assumption we have
ϕ(τ)ϕ(σ)ϕ(τ) ∈ ϕ(H ∩ C), which gives the result. In case (iii) we have the
equality

〈ϕ(τ)ϕ(δ)ϕ(τ) | δ ∈ ∆〉 = 〈ϕ(τδτ) | δ ∈ ∆〉.

Applying the homomorphism of R onto G it is easy to conclude that σ ∈
N (τ). 2

The following useful result is a special case of (6.1.4 (iii)).

Corollary 6.1.5 If at least two points of a line from K are contained in
N (τ) then the whole line is in N (τ). 2
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The following lemma, whose proof is obvious, refines (6.1.4 (ii)).

Lemma 6.1.6 Suppose that the hypothesis of (6.1.4(ii)) holds. For α, β ∈
H ∩ C, let KH and KG be the conjugacy classes of H and G, respectively,
containing the product αβ (so that KH fuses into KG). Suppose that the
natural action of G by conjugation on

Π(KG) = {{τ, σ} | τ, σ ∈ C, τσ ∈ KG}

is transitive. Then for {τ, σ} ∈ Π(KG) we have σ ∈ N (τ). 2

The following lemma (which is rather an observation) has been used in
our early studies of involution geometries and their representations. Al-
though this lemma is not used within the present treatment, we decided to
include it for the sake of completeness.

Lemma 6.1.7 Let Q ∼= 21+2n
ε be the extraspecial group of type ε ∈ {+,−}

of order 22n+1, where n ≥ 2 for ε = + and n ≥ 3 for ε = −. Let (R,ϕ) be
the universal representation group of the involution geometry I of Q. Then
R ∼= Q.

Proof. Let C and K be the set of involutions and the set of Kleinian
four-subgroups in Q, so that I = I(Q, C,K). Let z be the unique non-
identity element in the centre of Q, Q = Q/〈z〉. Let f be the quadratic
form on Q induced by the power map on Q, C be the image of C in Q, and K
be the set of images in Q of the subgroups from K which do not contain z.
Then f is non-singular, while C and K are the sets of 1- and 2-subspaces in
Q, isotropic with respect to f . By (3.6.2) Q is the universal representation
group of (C,K). To complete the proof it is sufficient to notice that ϕ(z) is
in the centre of R and hence can be factored out. 2

6.2 I(Alt7)
Let A = Alt7 and I = I(Alt7, C,K) be the involution geometry of A. Recall
that according to our notation C and K are the set of all involutions and the
set of all Kleinian four-subgroups in A. Every involution τ ∈ C is a product
of two disjoint transpositions. If τ = (a, b)(c, d) and σ = (e, f)(h, g) are
distinct involutions in A, then the product τσ is an involution (equivalently
[τ, σ] = 1) if and only if one of the following holds:

(I) τ and σ have the same support, i.e., {a, b, c, d} = {e, f, h, g};

(II) τ and σ share one transposition and the other transpositions are dis-
joint, for instance {a, b} = {e, f} and {c, d} ∩ {h, g} = ∅.

It is easy to see that if τ is an involution in A then CA(τ) ∼= (D8 ×
Sym3)+ permutes transitively the pair of involutions of type (I) commuting
with τ and the set of six involutions of type (II) commuting with τ .

The following result of a fundamental importance for the whole of our
project has been established by D.V. Pasechnik by means of computer cal-
culations.
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Proposition 6.2.1 Let (R,ϕ) be the universal representation of the invo-
lution geometry I(Alt7, C,K) of Alt7. Then R ∼= 3 · Alt7, in particular,
ϕ(C) is a conjugacy class in R. 2

The fact that 3 · Alt7 is a representation group of I(Alt7) follows from
the general principle (6.1.1) in view of the well known fact that the Schur
multiplier of Alt7 is of order 6, but the result that it is the universal repre-
sentation group is highly non-trivial.

Below we present the suborbit diagram with respect to the action of
A of the graph Σ = Σ(Alt7) on the set of involutions in A whose edges
are the pairs of commuting involutions of type (II). This diagram plays an
illustrative purpose in this section, but will be used more essentially in the
subsequent sections.
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Notice that the graph whose edges are the commuting pairs of type (I)
is just the union of 35 disjoint triangles.

Let us explain the notation on this diagram and further diagrams in this
chapter. Let τ be a fixed involution (a vertex of Σ), which correspond to
the orbit of length 1 on the diagram. Then Σ(τ,m,K) denotes an orbit of
CA(τ) on Σ, which is of length m and for every σ ∈ Σ(τ,m,K) the product
τσ belongs to the conjugacy class K of A. Such a suborbit will be said
to be of type K. If K determines the length m uniquely, then we simply
write Σ(τ,K) for such an orbit. On the other hand, if there are more than
one suborbit of type K of a given length, then we use indexes l and r (l
is for “left” and r is for “right”) to indicate the suborbits on the left and
on the right sides of the diagram, respectively. Thus on the above diagram
of Σ(Alt7) we have two suborbits of type 4A which are Σl(τ, 12, 4A) and
Σr(τ, 12, 4A).

We follow [CCNPW] for the names of conjugacy classes. Notice that the
character tables of the groups whose involution geometries we are consid-
ering in this chapter (which are Alt7, M22, U4(3), Co2 and Co1) are given
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in [CCNPW] as well as in [GAP] is a computer form. Using a standard
routine we can deduce from these character tables the structure constants
of multiplication of conjugacy classes in the relevant group G. Namely for
any three conjugacy classes K, L and M in G we can calculate the value

m(K,L,M) = #{(k, l,m) | k ∈ K, l ∈ L,m ∈M,kl = m}.

Thus for a given class C of involutions in G and a conjugacy class K in G
we can calculate the total lengths of suborbits of type K.

6.3 I(M22)

In this section we study the involution geometry I = I(M22) of the Mathieu
group H = M22. We know that H contains a single class C of involutions
of size 1155. Let H = G(M22) and ∆ = ∆(M22) be the derived graph of
H. By noticing that there are 1155 elements of type 2 in H (which are
the edges of ∆) and the stabiliser in H of such an element is of the shape
21+4

+ : (Sym3 × 2) and has the centre of order 2, we obtain the following.

Lemma 6.3.1 There is a bijection ε, commuting with the action of H from
the set C of involutions in H onto the set of edges of the derived graph ∆.
2

Below we present the suborbit diagram with respect to the action of
H of the graph Σ = Σ(M22) on C in which two distinct involutions τ and
σ are adjacent if and only if the edges ε(τ) and ε(σ) share a vertex of ∆.
This means that Σ is the line graph of ∆. The diagram of Σ is deduced
from the parameters of the centraliser algebra of the action of M22 on its
involutions by conjugation, calculated by D.V. Pasechnik. It also follows
from the parameters that the suborbits Σl(τ, 96, 4B) and Σr(τ, 96, 4B) are
paired to each other.

The next lemma provides us with a better understanding of the pairs
of commuting involutions in H.

Lemma 6.3.2 Let τ be an involution in H = M22, let ε(τ) = {v1, v2} be
the corresponding edge of ∆, let S be the G(S4(2))-subgeometry in H =
G(M22) containing ε(τ) and Πi and let 1 ≤ i ≤ 3 be the Petersen subgraphs
in ∆ containing ε(τ). Suppose that σ ∈ C commutes with τ and let m be
the length of the orbit of CH(τ) containing σ. Then either τ = σ or exactly
one of the following holds:

(i) ε(σ) contains vi for some i ∈ {1, 2} and it is contained in Πj for some
j ∈ {1, 2, 3}, τ, σ ∈ O2(H(vi)) ∩O2(H(Πj)) and m = 12;

(ii) ε(σ) is contained in S and in Πj for some j ∈ {1, 2, 3}, τ, σ ∈
O2(H(S)) ∩O2(H(Πj)) and m = 6;

(iii) ε(σ) is contained in Πj for some j ∈ {1, 2, 3} but not in S, τ, σ ∈
O2(H(Πj)) and m = 24;
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(iv) ε(σ) is contained in S but not in Πj for any j ∈ {1, 2, 3}, τ, σ ∈
O2(H(S)) and m = 8.

Proof. Recall that H(vi) ∼= 23 : L3(2), H(Πj) ∼= 24 : Sym5 and
H(S) ∼= 24 : Alt6. It is easy to deduce from the basic properties of G(M22)
and its derived graph that ε(O2(H(vi))

#) is the set of 7 edges containing
vi; ε(O2(H(Πj))

#) is the edge-set of Πj and ε(O2(H(S))#) is the set of
15 edges contained in S. In addition, Πj ∩ S is the antipodal triple in Πj

containing ε(τ). Finally, by the above suborbit diagram τ commutes with
exactly 50 other involutions in M22. Hence the result. 2
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It is well known that H = M22 contains two conjugacy classes of sub-
groups isomorphic to A = Alt7 and these classes are fused in AutM22. The
permutation character of H on the cosets of A given in [CCNPW] enables
us to reconstruct the fusion pattern of the conjugacy classes of A into con-
jugacy classes of H. If KA is a conjugacy class of A whose elements are
products of pairs of involutions (these classes can be read from the suborbit
diagram in Section 6.2) then the class of H containing KA is shown in the
table below.

Alt7 2A 3A 3B 4A 5A 6A

M22 2A 3A 3A 4B 5A 6A
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Let us compare the table against the suborbit diagram Σ(M22) In view
of the above made remark that the suborbits Σl(τ, 96, 4B) and Σr(τ, 96, 4B)
are paired and by (6.2.1), we obtain the following.

Lemma 6.3.3 Let I(M22) = I(M22, C,K) be the involution geometry of
M22 and τ, σ ∈ C. Then in terms of (6.1.4(ii)) and (6.1.6) if σ 6∈
Σ(τ, 48, 4A), then there is a subgroup A ∼= Alt7 which contains both τ and
σ, in particular, σ ∈ N (τ). 2

Lemma 6.3.4 If (R,ϕ) is the universal representation of I(M22). Then
ϕ(C) is a conjugacy class of R.

Proof. By (6.3.3) all we have to prove is that σ ∈ N (τ) whenever
σ ∈ Σ(τ, 48, 4A). Let us have a look at the suborbit diagram of Σ(M22). Re-
call that two involutions α and β are adjacent in Σ if β ∈ O2(CH(α)). Fur-
thermore, such a pair {α, β} is in a unique line (contained in O2(CH(α))).
On the other hand, if σ ∈ Σ(τ, 48, 4A) then there are at least 9 (which
is more than half the valency of Σ) vertices δ adjacent to σ such that
δ 6∈ Σ(τ, 48, 4A). Since such such a vertex δ is in N (τ) by (6.3.3), the result
is immediate from (6.1.5). 2

Proposition 6.3.5 The universal representation group of I(M22) is iso-
morphic to 3 ·M22.

Proof. By (6.3.4) and (6.1.2) the representation group R of I(M22) is
a non-split central extension of M22. The Schur multiplier of M22 is cyclic
of order 12 (cf. [CCNPW]). By (6.1.1) the non-split extension 3 ·M22 is a
representation group of I(M22), so it only remains to show that the unique

non-split extension H̃ ∼= 2·M22 is not an H-admissible representation group
of I(M22). Calculating with the character table of H̃ in the GAP package

[GAP] we see that H̃ has two classes C̃1 and C̃2 of involutions which map

onto C under the natural homomorphism of H̃ onto H. Furthermore, (up

to renumbering) for i = 1 or 2 an involution from C̃i commutes with 18 or

32 other involutions in C̃i. Since an involution from C commutes with 50
other involutions from C, this shows that H̃ is not a representation group
of I(M22) (the Kleinian four-subgroups are not lifted into a single class)
and completes the proof. 2

6.4 I(U4(3))

Let U = G(U4(3)) be the GAB (geometry which is almost a building)
associated with U = U4(3) (cf. Section 4.14 in [Iv99]). Then U belongs to
the diagram

2
◦

2
◦

2
◦

and admits a flag-transitive action of U . If {v1, v2, v3} is a maximal flag in
U (where vi is of type i), then U(v1) ∼= U(v3) ∼= 24 : Alt6, U(v2) ∼= 21+4

+ :
(3 × 3) : 4. Since U contains a single conjugacy class C of involutions and
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|CU (τ)| = 27 · 32 for τ ∈ C, we conclude that there is a bijection ε : C → U2

which commutes with the action of U .

Below is the suborbit diagram with respect to the action of AutU ∼=
U4(3).D8 of the graph Σ = Σ(U4(3)) on C in which two distinct involutions
τ, σ are adjacent if and only if

resU (ε(τ)) = resU (ε(σ))

(notice that this equality holds exactly when σ ∈ O2(CU (τ))).
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It follows directly from the diagram of U that v2 is incident to three
elements of type 1 and three elements of type 3. Furthermore, there are 15
elements of type 2 incident to v1, which are: v2 itself; six elements incident
with v2 to a common element of type 3 and the remaining eight. In view of
the fact that AutU induces a diagram automorphism of U , we obtain the
following

Lemma 6.4.1 If τ and σ are commuting involutions in U then there is
w ∈ U1∪U3 such that τ, σ ∈ O2(U(w)) and both ε(x) and ε(y) are incident
to w. 2

The group U contains four conjugacy classes of subgroups A ∼= Alt7
which are fused in AutU . The permutation character of U acting on the
cosets of A gives the following fusion pattern of the classes in A which are
products of two involutions into conjugacy classes of U .
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Alt7 2A 3A 3B 4A 5A 6A

U4(3) 2A 3BC 3D 4B 5A 6BC

Comparing the above table with the suborbits diagrams of Σ(U4(3))
and Σ(Alt7), we obtain the following analogy of (6.3.3).

Lemma 6.4.2 Let I(U4(3)) = I(U4(3), C,K) be the involution geometry
of U4(3). Then in terms of (6.1.4(ii)) and (6.1.6) if τ, σ ∈ C and σ 6∈
Σ(τ, 144, 4A), then there is a subgroup A ∼= Alt7 which contains both τ and
σ, in particular, σ ∈ N (τ). 2

It is absolutely clear from the suborbit diagram of Σ(U4(3)) that there
is a line {σ, δ1, δ2} in K such that σ ∈ Σ(τ, 144, 4A) and δi 6∈ Σ(τ, 144, 4A)
for i = 1, 2 which gives the following analogy of (6.3.4).

Lemma 6.4.3 If (R,ϕ) is the universal representation of I(U4(3)). Then
ϕ(C) is a conjugacy class of R. 2

Thus the universal representation R of I(U4(3)) is a non-split central
extension of U ∼= U4(3). The Schur multiplier of U is 32 × 4. By (6.1.1)
32 · U4(3) is a representation group of I(U4(3)). Let us have a look at

Ũ = 2 · U4(3). Calculations with GAP show that Ũ has two classes C̃1
and C̃2 of involutions outside the centre. Furthermore, an involution from
C̃i commutes with 48 or 18 other involutions from C̃i where i = 1 or 2,
respectively. Since an involution from C commutes with 64 other involutions
from C, similarly to the M22-case we conclude the Ũ is not a representation
group of I(U4(3)) and we obtain the main result of the section.

Proposition 6.4.4 The universal representation group of I(U4(3)) is iso-
morphic to 32 · U4(3).

6.5 I(Co2, 2B)

Let Σ = Σ(Co2) be the derived graph of F = G(Co2). The below presented
suborbit diagram of this graph with respect to the action of F ∼= Co2, has
been calculated by S.A. Linton. If v is a vertex of Σ (an element of type
4 in F) then F (v) ∼= 21+4+6.L4(2) coincides with the centraliser in F of
a 2B-involution in F from the conjugacy class 2B. In this way we obtain
a bijection ε from the conjugacy class C of 2B-involutions in F onto the
vertex-set of ∆.
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Let u be an element of type 1 in F and ∆[u] be the set of vertices in
∆ (which are elements of type 4 in F) incident to u. Then F (u) ∼= 210 :
AutM22, and the subgraph in Σ induced by Σ[u] is isomorphic to the 330-
vertex derived graph of resF (u) ∼= G(M22) (cf. Section 4.5). Since Q(u) :=
O2(F (u)) is the kernel of the action of F (u) on resF (u), we conclude that

{ε−1(v) | v ∈ Σ[u]}

is the orbit of length 330 of F (u)/Q(u) ∼= AutM22 on the set of non-
identity elements in Q(u). Since Q(u) is the 10-dimensional Golay code
module, by (4.5.1) we conclude that Q(u) is a representation group of the
derived system of resF (u) ∼= G(M22), which implies the following.

Lemma 6.5.1 The pair (Co2, ε
−1) is a representation of the derived sys-

tem D(Co2) of the geometry G(Co2). 2

Comparing the suborbit diagram of Σ(Co2) and the suborbit diagram
of the derived graph of G(M22) in Section 4.5 we conclude the following
result (the vertices of Σ are identified with the 2B-involutions in F ∼= Co2

via the bijection ε).
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Lemma 6.5.2 Let Σ[u] be the subgraph in Σ defined before (6.5.1). Suppose
τ ∈ Σ[u]. Then Σ[u] consists of τ , 7 vertices from Σ(τ, 15, 2A), 42 vertices
from Σ(τ, 210, 2B), 168 vertices from Σ(τ, 2520, 2C) and 112 vertices from
Σ(τ, 1680, 2B). 2

Lemma 6.5.3 Let I = I(Co2, 2B) and (R,ϕ) be the universal representa-
tion of I. Then

(i) every line of I is contained in a conjugate of O2(F (u));

(ii) the elements ϕ(α) taken for all α ∈ Σ[u] generate in R a subgroup
which maps isomorphically onto O2(F (u)) under the natural homo-
morphism of R onto F ∼= Co2;

(iii) (R,ϕ) is the universal representation of the derived system of G(Co2).

Proof. From the suborbit diagram of Σ(Co2) we observe that the
line set K of I consists of two F -orbits, say K1 and K2 such that if
{τ, σ1, σ2} ∈ K1 then σi ∈ Σ(τ, 210, 2B) and σi ∈ O2(CF (τ)) for i = 1, 2
and if {τ, σ1, σ2} ∈ K2, then σi ∈ Σ(τ, 1680, 2B) and σi 6∈ O2(CF (τ)) for
i = 1, 2. By (6.5.2) we observe that O2(F (u)) contains representatives of
both the orbits, which gives (i). The assertion (ii) follows from (4.5.8). By
(i) and (ii) the relations in R corresponding to the lines from K1 imply the
relations corresponding to the lines from K2 which gives (iii). 2

Let (R,ϕ) be the universal representation of I(Co2, 2B) (which is also
the universal representation ofD(Co2) by (6.5.3)). We are going to establish
the isomorphism R ∼= Co2 by showing that ϕ(C) is a conjugacy class of R.
We follow notation introduced after (6.1.3).

Lemma 6.5.4 Let (R,ϕ) be the universal representation of I(Co2, 2B)
and let τ, σ ∈ C (where C is the class of 2B-involutions in F ∼= Co2) and
let K be the conjugacy class of F containing the product τσ. Then

(i) σ ∈ N (τ) whenever K ∈ {2A, 2B, 2C};

(ii) σ ∈ N (τ) whenever K ∈ {3B, 4C, 4E, 5B, 6E}.

Proof. (i) follows from (6.5.3 (ii)). In order to establish (ii) we apply
(6.4.4) together with the fact that Co2 contains a subgroup isomorphic to
U4(3). The relevant part of the fusion pattern of the classes obtained via
GAP is presented below. This information gives the result in view of (6.1.4
(ii)). 2

U4(3) 2A 3BC 3D 4A 4B 5A 6BC

Co2 2B 3B 3B 4C 4E 5B 6E
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In order to complete the proof that ϕ(C) is a conjugacy class in R we
apply a version of (6.1.4 (iii)). We use the following preliminary result (we
continue to identify the vertex set of Σ(Co2) and the class of 2B-involutions
in Co2 via the bijection ε).

Lemma 6.5.5 In the notation of (6.5.4) suppose that δ is a vertex adjacent
to σ in Σ such that at least 8 neighbours of δ are contained in N (τ). Then
σ ∈ N (τ).

Proof. Let Rδ be the subgroup generated by the elements ϕ(γ) taken
for all γ ∈ Σ(δ). We claim that Rδ is elementary abelian of order 24.
Indeed, Σ(δ) (the set of 15 neighbours of δ in Σ) carries the structure of
the point-set of a rank 3 projective GF (2)-geometry whose lines are those
from K1 contained in this set. Hence the claim follows from (3.1.2). Since

{ϕ(γ) | γ ∈ Σ(δ)}

is the set of non-identity elements of Rδ and a maximal subgroup in Rδ
contains seven such elements, the result follows. 2

Lemma 6.5.6 The ϕ(C) is a conjugacy class in R.

Proof. By (6.5.4) all we have to show is that σ ∈ N (τ) whenever τσ
is in the class 4A or 4F .

Let σ ∈ Σl(τ, 13440, 4F ) and let δ ∈ Σ(τ, 161280, 4E) be adjacent to σ.
Then by (6.5.4) all the neighbours of δ are already in N (τ) and hence so is
σ by (6.5.5).

Let σ ∈ Σr(τ, 13440, 4F ) and let δ be the unique neighbour of δ in the
same orbit of CF (τ). Then the remaining 14 neighbours of δ are in N (τ)
and (6.5.5) applies.

Finally if σ ∈ Σ(τ, 1920, 4A), then there is a neighbour δ of σ in the
same orbits whose remaining 14 neighbours are in Σl(τ, 13440, 4F ) and the
latter orbit is already proved to be in N (τ). 2

Since the Schur multiplier of Co2 is trivial by (6.1.2) and (6.5.6) we get
the main result of the section.

Proposition 6.5.7 The universal representation (R,ϕ) of I(Co2, 2B) is
also the universal representation of the derived system of G(Co2) and R ∼=
Co2. 2

6.6 I(Co1, 2A)

In this section C is the conjugacy class of central involutions (2A-involutions
in terms of [CCNPW]) in G ∼= Co1 and Σ = Σ(Co1) is the graph on C in
which two involutions τ, σ ∈ C are adjacent if σ ∈ O2(CG(τ)) (equivalently
if τ ∈ O2(CG(σ))). Notice

CG(τ) ∼= 21+8
+ .Ω+

8 (2).
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The suborbit diagram of Σ with respect to the action of G presented below
in taken from [ILLSS] (the structure constants of the conjugacy classes
products are computed in GAP).
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Notice that Σ is the collinearity graph of the dual of the maximal
parabolic geometry H(Co1) (cf. Lemma 4.9.1 in [Iv99]). Let p be a point of
the tilde geometry G(Co1) (which is also a point of the maximal parabolic
geometry H(Co1)). Then G(p) ∼= 211.M24, Q(p) := O2(G(p)) is the irre-
ducible 11-dimensional Golay code module for G(p) = G(p)/Q(p) ∼= M24.
The intersection Q(p) ∩ C contains exactly 759 involutions which naturally
correspond to the octads of the S(5, 8, 24)-Steiner system associated with
G(p). The subgraph in Σ induced by Q(p) ∩ C is the octad graph (cf.
Section 3.2 in [Iv99]). If τ ∈ Q(p) ∩ C then Q(p) ∩ C contains 30 vertices
from Σ(τ, 270, 2A), 280 vertices from Σ(τ, 12600, 2A), and 448 vertices from
Σ(τ, 60480, 2C). This in view of the above diagram gives the following.

Lemma 6.6.1 Let I(Co1, 2A) = I(Co1, C,K) be an involution geometry of
G = Co1 (here C is the class of 2A-involutions and K is the set of all 2A-
pure Kleinian four-subgroups in G). Then every line from K is contained
in a conjugate of Q(p). 2

The group Co1 contains Co2 as a subgroup. The fusion pattern of
the relevant classes computed in GAP is presented below. Notice that the
2B-involutions from Co2 are fused to the class of 2A-involutions in Co1.
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Co2 2A 2B 2C 3B 4A 4C 4E 4F 5B 6E

Co1 2A 2A 2C 3B 4A 4C 4C 4D 5B 6E

By (6.1.4), comparing the above fusion pattern against the suborbit
diagrams of Σ(Co1) and Σ(Co2) we obtain the following

Lemma 6.6.2 Let (R,ϕ) be the universal representation of I(Co1, 2A) =
I(Co1, C,K). Then ϕ(C) is a conjugacy class of R. 2

The Schur multiplier of Co1 is of order 2 and the non-split central exten-
sion 2 ·Co1 is the automorphism group Co0 of the Leech lattice preserving
the origin. It can be checked either by calculating the structure constants
or by direct calculations in Co0 that the latter is not a representation group
of I(Co1, 2A) and hence we have the following.

Proposition 6.6.3 Co1 is the universal representation group of the invo-
lution geometry I(Co1, 2A). 2
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Chapter 7

Large sporadics

Let G be one of the following groups: F ′24, J4, BM , and M and G(G) be
the corresponding 2-local parabolic geometry with the following respective
diagram:

G(Fi′24) :
2
◦

2
◦ ∼

2
◦

2
◦,

G(J4) :
2
◦

2
◦

2
◦ P

1
◦,

G(BM) :
2
◦

2
◦

2
◦

2
◦ P

1
◦,

G(M) :
2
◦

2
◦

2
◦

2
◦ ∼

2
◦.

As usual the first and second left nodes on the diagram correspond to
points and lines, respectively. In this chapter we calculate the universal
representations of these four geometries. Originally the calculations were
accomplished in [Rich99] for Fi′24, in [ISh97] for J4 and in [IPS96] for BM
and M . For the classification of the flag-transitive P - and T -geometries we
only need to know that G(J4), G(BM) and G(M) do not possess non-trivial
abelian representations (cf. Proposition 10.4.3 and Section 10.5) and this
already comes as a consequence of Proposition 7.4.1, since the commutator
subgroup of Q̃(p) is 〈ϕ̃(p)〉.

7.1 Existence of the representations

The geometries G = G(G) for G = Fi′24, J4, BM or M possess the following
uniform description. The set G1 of points is the conjugacy class of central
involutions in G. If p is a point, then Q(p) := O2(G(p)) is an extraspe-
cial 2-group of type 21+2m

+ where m = 6, 6, 11 or 12, respectively, and
H := G(p)/Q(p) is a flag-transitive automorphism group of H := resG(p)
(sometimes we write Hp instead of H to indicate the point p explicitly).
The latter residue is isomorphic to G(3 ·U4(3)), G(3 ·AutM22), G(Co2), and
G(Co1), respectively. A triple {p1, p2, p3} of points is a line if and only if

111
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p1p2p3 = 1 and pi ∈ Q(pj) for all 1 ≤ i, j ≤ 3. Since G is a simple group,
it is generated by the points and hence we have the following.

Lemma 7.1.1 If ϕ is the identity mapping, then (G,ϕ) is a representation
of G. 2

Next we show that in two of the four cases the universal representation
group is larger than G.

Lemma 7.1.2 With G as above let G̃ be the extension of G by its Schur
multiplier. Then (G̃, ϕ̃) is a representation of G for a suitable mapping ϕ̃.

Proof. The Schur multipliers of J4 and M are trivial. The Schur mul-
tiplier of Fi′24 is of order 3 (an odd number), hence (6.1.1) applies. By
the construction given in [Iv99] the geometry G(BM) is a subgeometry in
G(M), which means that the points of G(BM) can be realized by some
central involutions in M . These involutions generate in M a subgroup iso-
morphic to 2 ·BM , which is the extension of BM by its Schur multiplier. 2

The following theorem (which is the main result to be proved in this
chapter) shows that the representation in (7.1.2) is universal.

Theorem 7.1.3 Let G = Fi′24, J4, BM , or M and G = G(G) be the
2-local parabolic geometry of G. Then the universal representation group
R(G) of G is isomorphic to the extension of G by its Schur multiplier (i.e.,
to 3 · Fi′24, J4, 2 ·BM , and M), respectively.

In the remainder of the section we introduce some further notation.
Let p be a point of G and l = {p, q, r} be a line containing p. Let Υ be
the collinearity graph of H = resG(p) (so that l is a vertex of Υ). Let
Q(p) = Q(p)/〈p〉 (an elementary abelian 2-group). For q ∈ Q(p) and
q being the image of q in Q(p) let θ(q) = 0 if q2 = 1 and θ(q) = 1 if
q2 = p. Then θ is a quadratic form on Q(p). In each of the four cases
under consideration H acts irreducibly on Q(p) and θ is the only non-zero
H-invariant quadratic form on Q(p) (viewed as vector space over GF (2)).
Let β denote the bilinear form associated with θ:

β(x, y) = θ(x) + θ(y) + θ(x+ y).

Lemma 7.1.4 Let l = {p, q, r} and l′ = {p, q′, r′} be two distinct lines
containing p. Then

(i) Q(p) induces on l ∪ l′ an action of order 4;

(ii) the subgraph induced by l ∪ l′ in the collinearity graph of G is either
the union of two triangles sharing a vertex or the complete graph;

(iii) a point cannot be collinear to exactly two points on a line.
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Proof. If l′′ = {p, q′′, r′′} is another line containing p then q′′ commutes
with l (where the latter is considered as a subgroup of order 22 in Q(p)) if
and only if β(l, l′′) = 0. Notice that if q′′ does not commute with l, it swaps
the points q and r. Since β is non-singular we can find a point collinear to
p which commutes with l but not with l′. In view of the obvious symmetry
between l and l′ we have (i). Now (ii) is immediate and implies (iii). 2

Table V. Geometries of Large Sporadics

G Fi′24 J4 BM M

Q(p) 21+12
+ 21+12

+ 21+22
+ 21+24

+

H 3 · U3(4).22 3 ·AutM22 Co2 Co1

H(l) 25.Alt6 25.Sym5 210 : AutM22 211 : M24

O2(H(l)) 2A15D6E10 2A15B10C6 2A77B330C616 2A759C1288

We summarize some of the above mentioned properties of the four ge-
ometries under consideration in Table V. The last row shows the intersec-
tions of O2(H(l)) with the conjugacy classes of involutions in H (we follow
the notation of [CCNPW] so that 2XmYn... means that O2(H(l)) contains
m elements from the class 2X, n elements from the class 2Y etc.
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Recall that the sextet graph Ξ is the collinearity graph of the rank 3
T -geometry G(M24). The vertices of Ξ are the sextets and two such sextets
Σ = {S1, ..., S6} and Σ′ = {S′1, ..., S′6} are adjacent if and only if | Si ∩ S′j |
is even for every 1 ≤ i, j ≤ 6. The suborbit diagram of Ξ with respect to
the action of M24 is as above

Lemma 7.1.5 Let G = Fi′24 or J4 and let Γ be the collinearity graph of
G = G(G). Then Γ contains the sextet graph Ξ as a subgraph. The points,
lines and planes of G contained in Ξ form a subgeometry X ∼= G(M24); if
X is the stabilizer of Ξ in G, then X ∼ 211.M24, O2(X) is the irreducible
Golay code module C11 (it is generated by the points in Ξ) and X contains
Q(p) for every p ∈ Ξ.

Proof. For G = Fi′24 the subgraph Ξ is induced by the points incident
to an element x4 of type 4 in G and X = resG(x4). For G = J4 the
subgeometry X is the one constructed as in Lemma 7.1.7 in [Iv99]. 2

Notice thatX splits overO2(X) ifG = J4 and does not split ifG = Fi′24.

7.2 A reduction via simple connectedness

In the above notation let (R,ϕu) be the universal representation of G. By

(7.1.2) there is a homomorphism ψ of R onto G̃ such that ϕ̃ is the compo-
sition of ϕu and ψ and in order to prove (7.1.3) we have to show that ψ is
an isomorphism. The group R acts on G inducing the group G with kernel
being ψ−1(Z(G̃)). We are going to make use of the following fact.

Proposition 7.2.1 The geometry G is simply connected.

Proof. The simple connectedness of G(Fi′24) was established in [Iv95],
of G(J4) in [Iv92b] and again in [IMe99]. For the simple connectedness
results for G(BM) and G(M) see Sections 5.11 and 5.15 in [Iv99] and ref-
erences therein. 2

By (1.4.6) and (7.2.1) if Φ = {x1, x2, ..., xn} is a maximal flag in G
(where n is the rank), then G̃ is the universal completion of the amalgam

A(G̃,G) = {G̃(xi) | 1 ≤ i ≤ n}.

Furthermore, since res−G (xj) is simply connected for 4 ≤ j ≤ n (this residue
is the T -geometry G(M24) in the case G = Fi′24, j = 4, and a projec-

tive GF (2)-geometry in the remaining cases). Hence G̃j is the universal
completion of the amalgam

Ej = {G̃j ∩ G̃i | 1 ≤ i ≤ j − 1},

and we have the following refinement of (7.2.1).

Proposition 7.2.2 Let p, l, π be pairwise incident point, line and plane in
G. Then G̃ is the universal completion of the amalgam

B = {G̃(p), G̃(l), G̃(π)}.

2
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Thus in order to prove (7.1.3) it would be sufficient to establish the
following.

Lemma 7.2.3 The universal representation group R of G contains a suba-
malgam D = {Rbpc, Rblc, Rbπc} which generates R and maps isomorphi-

cally onto the subamalgam B in G̃ under the homomorphism ψ.

We should be able to reconstruct the subgroups Rbαc for α = p, l and π
in terms of G and its representation in R. Towards this end we look on how
the subgroups G̃(α) can be reconstructed. It turns out that for α = p, l or

π the subgroup G̃(α) (which is the stabiliser of α in G̃) is generated by the
elements ϕ̃(q) it contains:

G̃(α) = 〈ϕ̃(q) | q ∈ G1, ϕ̃(q) ∈ G̃(α)〉.

Thus it is natural to define Rbαc in the following way:

Rbαc = 〈ϕu(q) | q ∈ G1, ϕ̃(q) ∈ G̃(α)〉.

Then we are sure at least that Rbαc maps onto G̃(α) under the homomor-
phism ψ.

By a number of reasons (of a technical nature) we prefer to deal with
one type of parabolics, namely with the point stabilizers. So our goal is to
prove the following.

Lemma 7.2.4 For a point p in G define

Rbpc := 〈ϕu(q) | q ∈ G1, ϕ̃(q) ∈ G̃(p)〉.

Then

(i) Rbpc maps isomorphically onto G̃(p) under the homomorphism ψ :

R→ G̃;

(ii) for a point r collinear to p the subgroup Rbpc∩Rbrc maps surjectively

onto G̃(p) ∩ G̃(r).

Since G̃(p) is the full preimage of the centraliser of p in G, we can
redefine Rbpc as

Rbpc = 〈ϕu(q) | q ∈ G1, [p, q] = 1〉.

Furthermore, it turns out that in each of the four cases under consideration
if q commutes with p, then q is at distance at most 2 in the collinearity
graph Γ of G. Thus if we put

N(p) = {q | q ∈ G1, [p, q] = 1, dΓ(p, q) ≤ 2}

then Rbpc can be again redefined as

Rbpc = R[N(p)].
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This definition (which involves only local properties of the collinearity graph
Γ) we will be using and the fact that it is equivalent to the previous defini-
tions will not be used.

We will establish (7.2.4 (i)) in Section 7.6 and after this is done, (7.2.4
(ii)) can be deduced from the following result (which is an internal property

of G̃) to be established in Section 7.7.

Lemma 7.2.5 If p and r are collinear points then G̃(p)∩G̃(r) is generated
by the elements ϕ̃(q) taken for all q ∈ N(p) ∩N(r).

7.3 The structure of N(p)

In this section we describe the structure of the set N(p) of vertices in
the collinearity graph Γ of G which are at distance at most 2 from p and
commute with p (considered as central involutions in G).

First we introduce some notation. Clearly N(p) contains Γ(p). Let
Γj2(p), 1 ≤ j ≤ t = t(G), be the G(p)-orbits in N(p) ∩ Γ2(p). Let 2αj be

the length of a Q(p)-orbit in Γj2(p) (where Q(p) = O2(G(p))) and let ni be
the number of such orbits, so that

|Γj2(p)| = 2αj · nj

(clearly the αj and nj depend on j and on G). We will see that for given G
the numbers αj are pairwise different and we adopt the ordering for which

α1 < α2 < ... < αt. Let bj1 be the number of vertices in Γj2(p) adjacent

in Γ to a given vertex from Γ(p) and cj2 be the number of vertices in Γ(p)

adjacent to a given vertex from Γj2(p). Then

|Γj2(p)| = |Γ(p)| · b
j
1

cj2
.

Throughout the section (p, q, r) is a 2-path in Γ such that the lines
l = {p, q, q′} and l′ = {q, r, r′} are different. Then l and l′ are different
points ofHq = resG(q). Let Υ be the collinearity graph ofHq. The suborbit
diagram of Υ with respect to the action of Hq = G(q)/Q(q) can be found
in Section 5.1 for Hq being G(Co1) or G(Co2), in Section 4.4 for Hq being
G(3 ·M22) and in Section 5.6 for Hq being G(3 · U3(4)).

In the cases G = Fi′24 and G = J4 the group Hq (isomorphic to 3 ·
U3(4).22 and 3 · AutM22, respectively) contains a normal subgroup D of
order 3 which acts fixed-point freely on the point-set of Hq. Let Υ∗ denote
the collinearity graph of the enriched point-line incidence system (whose
lines are those of Hq together with the orbits of D on the point-set). In
order to argue uniformly, for G = BM and M we put Υ∗ = Υ. Let
S∗ denote the point-line incidence system for which Υ∗ is the collinearity
graph.

Lemma 7.3.1 Let A be the orbit of r under Q(p) and B the orbit of l′

under O2(Hq(l)). Then
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(i) Q(p)∩Q(q) is a maximal elementary abelian subgroup (of order 2m+1)
in Q(q) ∼= 21+2m

+ and Q(p) ∩G(q) maps surjectively onto O2(Hq(l));

(ii) |A| = |B| = 2 if dΓ(p, r) = 1 and |A| = 4 · |B| if dΓ(p, r) = 2;

(iii) r ∈ N(p) if and only if β(l, l′) = 0.

Proof. Since the commutator subgroups of Q(p) and Q(q) are of order
2 generated by p and q, respectively, Q(p) ∩ Q(q) is elementary abelian
and its image in Q(q) is totally singular with respect to θ. Hence the
image is at most m-dimensional and |Q(p) ∩ Q(q)| ≤ 2m+1. On the other
hand, Q(p) ∩G(q) has index 2 in Q(p) and its image in Hq is contained in
O2(Hq(l)). One can see from the Table V in Section 7.1 that |O2(Hq(l))| =
2m−1 which implies (i).

If r is adjacent to p then the Q(p)-orbit of r is of length 2 and clearly
|A| = |B| = 2. Suppose that dΓ(p, r) = 2. We claim that r and r′ are in
the same Q(p)-orbit. Indeed, otherwise l′ (which is a subgroup of order 22

in Q(q)) commutes with Q(p)∩Q(q). But by (i) Q(p)∩Q(q) is a maximal
abelian subgroup in Q(q). Hence l′ must be contained in Q(p)∩Q(q), but in
this case r ∈ l′ ⊆ Q(p) and r is collinear to p by the definition of G, contrary
to our assumption. The image of r under an element from Q(p) \ G(q) is
not collinear to q. Hence the orbit of r under Q(p) is twice longer than its
orbit under Q(p)∩G(q) and (ii) follows. Finally (iii) is immediate from the
definition of θ and β. 2

Lemma 7.3.2 The following three conditions are equivalent:

(i) p and r are adjacent in the collinearity graph Γ of G;

(ii) r ∈ Q(q) ∩Q(p);

(iii) l and l′ are adjacent in Υ∗;

Proof. First of all (i) and (ii) are equivalent by the definition of the
collinearity in G. By (7.3.1) p and r can be adjacent in Γ only if the orbit
of l′ under O2(Hq(l)) has length at most 2. The orbit lengths of O2(Hq(l))
can be read from the suborbit diagram of Υ∗. From these diagrams we see
that p and r can be adjacent only if l and l′ are adjacent in Υ∗. Hence (i)
implies (iii). If l and l′ are collinear in Hq then the union l∪ l′ is contained
in a plane, in particular, it induces a complete subgraph in Γ. Suppose that
l and l′ are adjacent in Υ∗ but not in Υ. In this case G = Fi′24 or G = J4

and by (7.1.5) Γ contains the sextet graph Ξ as a subgraph. The suborbit
diagram of Ξ shows that in the considered situation p and r are adjacent.
This shows that (iii) implies (i) and completes the proof. 2

As we have seen in the proof of (7.3.1), the image ofQ(p)∩Q(q) inQ(q) is
m-dimensional. We can alternatively deduce this fact from (7.3.2). Indeed,
Q(q) supports the representation (Q(q), ϕ) of S∗ (compare (1.5.1)). In view
of (5.6.2), (4.4.2), (5.3.2), and (5.2.3) this representation is universal when
G = Fi′24, J4, or M and has codimension 1 in the universal when G = BM .
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Now by (5.6.3), (4.4.8 (i)), (5.2.3 (ii)) and (5.3.3) (for G = Fi′24, J4, BM ,
and M , respectively) we observe that the elements ϕ(l′) taken for all l′

equal or adjacent to l in Υ∗ generate in Q(p) a subspace of dimension m
at least. Since for such an l′ the subgroup ϕ(l′) is contained in the image
of Q(p) ∩Q(q) in Q(p), the dimension of the image is exactly m.

As a byproduct of this consideration we obtain the following useful
consequence.

Corollary 7.3.3 If p and q are adjacent vertices in Γ then Q̃(p)∩ Q̃(q) is

a maximal abelian subgroup of index 2m−1 in Q̃(p) (where Q(p) ∼= 21+2m
+ )

and it is generated by the elements ϕ̃(r) taken for all

r ∈ {p, q} ∪ (Γ(p) ∩ Γ(q)).

2

We will use the following easy principle.

Lemma 7.3.4 Suppose that r ∈ N(p) ∩ Γ2(p) and let Γj2(p) be the G(p)-
orbit containing r. Let r̂ denote the image of r in Hp = G(p)/Q(p). Then

(i) r̂ ∈ O2(Hp(l));

(i) {r̂ | r ∈ Γj2(p)} is a conjugacy class of involutions in Hp;

(ii) if r and s are in the same Q(p)-orbit then r̂ = ŝ;

(iii) the number nj of Q(p)-orbits in Γj2(p) divides the size kj of the con-
jugacy class of r̂ in H.

Proof. (i) follows from (7.3.1 (i)), the rest is easy. 2

Comparing (7.3.2) with the suborbit diagram of Υ∗, in view of (7.3.4)
and Table V we obtain the following lemma (recall that t = t(G) is the
number of G(p)-orbits in N(p) ∩ Γ2(p)).

Lemma 7.3.5 (i) if G ∼= Fi′24 then t = 4; if r ∈ Γj2(p) then l′ ∈ Υ3
3(l),

Υ2
2(l), Υ1

2(l) and Υ2
3(l); the Q(p)-orbit of r has length 24, 25, 26 and

27; r̂ is in the Hp-conjugacy class 2A, 2A, 2D and 2E for j = 1, 2, 3
and 4;

(ii) if G = J4 then t = 3; if r ∈ Γj2(p) then l′ ∈ Υ1
3(l), Υ1

2(l) and Υ2
2(l);

the Q(p)-orbit of r has length 24, 25 and 26; r̂ is in the Hp-conjugacy
class 2A, 2A and 2B for j = 1, 2 and 3;

(iii) if G = BM then t = 2; if r ∈ Γj2(p) then l′ ∈ Υ1
2(l) and Υ2

2(l); the
Q(p)-orbit of r has length 27 and 28; r̂ is in the Hp-conjugacy class
2A and 2B for j = 1 and 2;

(iv) if G = M then t = 3; if r ∈ Γj2(p) then l′ ∈ Υ1
2(l), Υ2

2(l) and Υ2
3(l);

the Q(p)-orbit of r has length 28, 29 and 213; r̂ is in the Hp-conjugacy
class 2A, 2A and 2C for j = 1, 2 and 3. 2
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By the above lemma for each G under consideration and every 1 ≤ j ≤ t
we know that bj1 is twice the length of the orbit of l′ under Hq(l) (assuming

that r ∈ Γj2(p)), the length 2αj of a Q(p)-orbit in Γj2(p) is also known and
the number nj of these orbits is divisible by the size kj of the Hp-conjugacy
class of r̂ (which can be read from [CCNPW]). Thus in order to find the
length of Γj2(p) we only have to calculate cj2. The above consideration gives

the following upper bound on cj2.

Lemma 7.3.6 cj2 divides

|Γ(p)| · bj1
2αj · kj

.

2

A lower bound comes from the following rather general principle, which
can be easily deduced from (7.1.4).

Lemma 7.3.7 Suppose that r ∈ Γj2(p). Let e be the number of 2-paths in
Υ∗ joining l and l′, i.e.,

e = |Υ∗(l) ∩Υ∗(l′)|.

Then the subgraph in Γ induced by Γ(p)∩Γ(r) has valency 2·e, in particular,
cj2 ≥ 1 + 2 · e. 2

The next four lemmas deal with the individual cases. The diagrams
given in these lemmas present fragments of the suborbit diagrams of Γ.
These fragments show the orbits of G(p) on N(p) and the number of vertices
in Γ(p) adjacent to a vertex from such an orbit.

Lemma 7.3.8 The structure of N(p) in the case G = Fi′24 is as on the
following diagram.
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Γ1
2(p) Γ2

2(p) Γ3
2(p) Γ4

2(p)

Γ(p)

{p}1

2 · 1701

26 · 37824 · 2835 25 · 25515 27 · 17010

9 3 27 1

120 720 192 640

3402

1

1+60+4

21+12
+ .3 · U3(4).22
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Proof. The collinearity graph of G = G(Fi′24) is also the collinearity
graph of the extended dual polar space E(Fi′24) (cf. Lemma 5.6.6 in [Iv99]).
The diagram of E(Fi′24) is

2
◦

2
◦

4
◦ c∗

1
◦.

Let Θ be the subgraph in Γ induced by the vertices (points) incident to an
element y of type 4 in E(Fi′24) (we assume that y is incident to p). Then Θ
is the collinearity graph of the building G(Ω−8 (2)) with the suborbit diagram

���� �� � �� �1 2 · 27 26
54 1

1+20

32 27

27

æ
with respect to the action of G(y) ∼= 28 : Ω−8 (2).2 and G(y) contains Q(p).
Since O2(G(y)) acts transitively on Θ2(p) of size 26, we conclude that
Θ2(p) ⊆ Γ3

2(p) and hence c32 is at least 27. Since k3 = 378, we obtain
c32 = 27.

Now let Ξ be the subgraph as in (7.1.5) containing p andX ∼= 211.M24 be
the stabilizer of Ξ in G. Since X contains Q(p) and O2(X(p)) acts on Ξ1

2(p)
and Ξ2

2(p) with orbits of length 24 and 25, we conclude that Ξ1
2(p) ⊆ Γ1

2(p)
and Ξ1

2(p) ⊆ Γ2
2(p), particularly c12 ≥ 9 and c22 ≥ 3. Since k1 = k2 = 2835

we immediately conclude that c12 = 9. A more detailed analysis shows
that c22 = 3. But since the particular value of c22 will not be used in our
subsequent arguments, we are not presenting this analysis here. Finally,
since k4 = 17010, direct calculation shows that c42 = 1. 2

Lemma 7.3.9 The structure of N(p) in the case G = J4 is as on the
following diagram.

����

�
�
�
�

�
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�
�
�
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�
�
�
�
�

Γ1
2(p) Γ2

2(p) Γ3
2(p)

Γ(p)

{p}1

2 · 693

24 · 1155 25 · 3465 26 · 990

9 3 7

120 240 320

1386

1

1+60+4

21+12
+ .3 ·AutM22

%
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e
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ee
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Proof. By Propositions 1, 6, 9, and 15 in [J76] we see that G(p)\Q(p)
contains involutions t′, t1, t̃1 conjugate to p in G with centralisers in Q(p)
of order 29, 28, 27, respectively. This shows that t′ ∈ Γ1

2(p), t1 ∈ Γ2
2(p),

t̃1 ∈ Γ3
2(p). Also by [J76] we know that |CG(p)(τ)| is 217 ·32, 216 ·3, 214 ·3 ·7

for τ = t′, t1, t̃1, respectively, and hence cj2 are as on the diagram. If Ξ is a
subgraph from (7.1.5) containing p, then Ξ1

2(p) ⊆ Γ1
2(p) and Ξ2

2(p) ⊆ Γ2
2(p).

Notice that G(p) acts on the set of Q(p)-orbits in Γ3
2(p) as on the set of

planes in resG(p) ∼= G(3 ·M22). 2

Lemma 7.3.10 The structure of N(p) in the case G = BM is as on the
following diagram.

����

Γ1
2(p) Γ2

2(p)

Γ(p)

{p}1

2 · 46575

27 · 56925 28 · 1024650

63 15

4928 42240

93150

1

1+924

21+22
+ .Co2
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Proof. We have k1 = 56925, k2 = 1024650, so that c12 divides 63
and c22 divides 15. Let Σ be the subgraph induced by the vertices in a
subgeometry G(S8(2)) in G as in Lemma 5.4.5 in [Iv99]. Then it is easy to
see that (assuming that p ∈ Σ) Σ2(p) ⊆ Γ1

2(p) and c12 = 63. By (7.3.7) we
see that c22 is at least 15. In view of the above it is exactly 15. 2

Lemma 7.3.11 The structure of N(p) in the case G = M is as on the
following diagram.
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���

Γ1
2(p) Γ3

2(p)

Γ(p)

{p}1

2 · 8292375

28 · 46621575 213 · 10680579000

16584750

1

1+7084

21+24
+ .Co1

�� �
�� �

�� ��� �
"
"
"
"
"
"
"
""

29 · 6293912625

Γ2
2(p)

135

27 · 759 28 · 11385 212 · 1288

b
b
b

b
b
b

b
bb 15 1

Proof. Since k1 = k2 = 46621575 and k3 = 10680579000 we conclude
that c32 = 1 and that c12 divides 135. Let Ψ be the subgraph of valency
270 on 527 vertices introduced before Lemma 5.3.3 in [Iv99] and suppose
that p ∈ Ψ. Then the stabilizer of Ψ in G contains Q(p) and |Ψ2(p)| = 28.
Hence Ψ2(p) ⊆ Γ1

2(p) and since Ψ contains 135 paths of length 2 joining a
pair of vertices at distance 2, we have c12 = 135. The fact that c22 = 15 is
a bit more delicate, a proof of this equality can be found in [MSh01]. In
the present work the particular value of c22 does not play any role and we
indicate it on the diagram only for the sake of completeness. 2

7.4 Identifying R1(p)

In this section we make a first step in establishing (7.2.4) by proving the
following

Proposition 7.4.1 The homomorphism ψ : R→ G̃ restricted to

R1(p) = 〈ϕu(q) | dΓ(p, q) ≤ 1〉

is an isomorphism onto Q̃(p) = O2(G̃(p)).

Since it is clear that ψ maps R1(p) surjectively onto Q̃(p), in order to
prove (7.4.1) it is sufficient to show that the order of R1(p) is at most that

of Q̃(p) (which is 213, 213, 224, and 225 for G = Fi′24, J4, BM , and M ,
respectively).

By (2.6.2) the mapping

χ : l = {p, q, r} 7→ 〈zp, zq, zr〉/〈zp〉

turns R1(p) into a representation group of H = resG(p). If G = BM or M
then by (5.4.1) this immediately implies that R1(p) is abelian of order at
most 223 or 224, respectively, and we have the following.
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Lemma 7.4.2 If G = BM or M , then (7.4.1) holds. 2

For the remainder of the section we deal with the situation when G =
Fi′24 or J4.

Lemma 7.4.3 If G = Fi′24 or J4 then

(i) (R1(p), χ) is a representation of the enriched point-line incidence sys-
tem S∗ of H;

(ii) R1(p) is a quotient of R(S∗) ∼= 21+12
+ .

Proof. Let D be a Sylow 3-subgroup (of order 3) in O2,3(G(p)) and
let {l1, l2, l3} be a D-orbit on the set of lines in G containing p. Then the
set S = l1 ∪ l2 ∪ l3 is contained in a subgraph Ξ as in (7.1.5) stabilized by
X ∼ 211.M24. Since Ξ generates O2(X) which is an irreducible Golay code
module for X/O2(X) ∼= M24 one can easily see that S is the set on non-
identity elements of an elementary abelian subgroup of order 23 contained
in Q(s) for every s ∈ S. This shows (i). Now (ii) is by (4.4.6) and (5.6.5).
2

By (7.4.3) we see that for G = Fi′24 or J4 the size of R1(p) is at most

twice that of Q̃(p) (isomorphic to Q(p) in the considered cases). The next
lemma shows that this bound cannot be improved locally. Let T = (Π, L)
be the point-line incidence system where Π = {p} ∪ Γ(p) and L = L(Π) is
the set of lines of G contained in Π.

Lemma 7.4.4 If G = Fi′24 or J4 then R(T ) ∼= Q(p)× 2 ∼= 21+12
+ × 2.

Proof. Let (Q(p), ϕ) be the representation of T where ϕ is the identity
mapping. Let be χ the mapping of the point-set of H = resG(p) into Q(p)
which turns the latter into a representation group of H. Then χ can be
constructed as follows.

Let D be a Sylow 3-subgroup of O2,3(G(p)) and C = CG(p)(D)/〈p〉
(isomorphic to 3 ·U3(4) or 3 ·M22). Then (compare the proof of (4.4.1)) C
acts flag-transitively on H and has two orbits, say Φ1 and Φ2 on Γ(p). Let
χi be the mapping which sends a line l of G containing p onto its intersection
with Φi. Then for exactly one i ∈ {1, 2} the mapping χi is the required
mapping χ. We claim that Φ := Im(χ) is a geometrical hyperplane in T . It
is clear from the above that every line containing p intersects Φ in exactly
one point. Let l ∈ L be a line disjoint from p. Let li, 1 ≤ i ≤ 3, be the
lines containing p and intersecting l and let li = {p, ri, si} where ri ∈ Φ for
1 ≤ i ≤ 3. Then l is one of the following four lines:

{r1, r2, r3}, {r1, s2, s3}, {s1, r2, s3}, {s1, s2, r3}.

Hence Φ is indeed a geometrical hyperplane. Since Q(p) is extraspecial,
it is easy to see that it is generated by Φ. Now by (2.3.5) T possesses a
representation in the direct product of Q(p) and a group of order 2. On
the other hand, arguing as in the proof of (7.4.3) we can see that the order
of R(T ) is at most 214 and the result follows. 2

Thus when G = Fi′24 or J4 we have the following two possibilities:
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(P1) The restriction of ψ to R1(p) is an isomorphism onto Q̃(p).

(P2) The restriction of ψ to R1(p) is a homomorphism with kernel Y (p) of
order 2.

Suppose that (P2) holds and let Z be the normal closure in R of the
subgroups Y (p) taken for all points p. Then R/Z possesses a representation
of G for which (P1) holds. Furthermore, R/Z is the universal representation
group with this property in the sense that it possesses a homomorphism
onto every representation group for which (P1) holds (for every point p).
Below in this section we show that if (P2) holds then the kernel Y (p) is
independent on the particular choice of the point p. Hence Z is of order 2.
In the subsequent sections of the chapter we show that the universal group
R/Z for which (P1) holds is G̃ (which is 3 · Fi′24 or J4). Since the Schur

multiplier of G̃ is trivial we must have

R ∼= G̃× 2,

which is not possible by (2.1.1).

Thus in the remainder of this section we assume that (P2) holds and
show that Y (p) is independent on p and in the subsequent sections we show

that the universal group satisfying (P1) is G̃. In order to have uniform
notation we denote this group by R instead of R/Z.

By (7.4.3) and (7.4.4) we have

R1(p) ∼= R(T ) ∼= 21+12
+ × 2

and

R1(p) ∼= R(S∗) ∼= 21+12
+ .

This shows that the commutator subgroup of R1(p) is of order 2 and if cp
denotes the unique non-trivial element of this commutator subgroup then
cp 6= zp (where zp = ϕu(p)) and 〈cp, zp〉 is the centre of R1(p). Under the
homomorphism ψ both cp and zp map onto ϕ̃(p) which gives the following.

Lemma 7.4.5 Let p and q be distinct collinear points of G. Then the only
possible equality among the elements zp, zq, cp, cq, zpcp and zqcq is the
equality

zpcp = zqcq.

2

We are going to show that the equality in the above lemma in fact holds
for every pair of points. Since it is clear that zpcp generates the kernel Y (p)
of the restriction of ψ to R1(p), by this we will accomplish the goal of this
section.

Let l = {p, q, r} be a line and let

Γ(l) = {s ∈ Γ | dΓ(s, t) ≤ 1 for every t ∈ l}.
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For s ∈ Γ(p) let m be the line containing p and s. By (7.1.4) and (7.3.2)
we know that s ∈ Γ(l) if and only if l and m are either equal or adjacent
in the collinearity graph Υ∗ of the enriched point-line incidence system of
H = resG(p). Let C(l) be the set of points s as above such that m is either
equal or adjacent to l in Υ (i.e., m and l are equal or collinear in H) and
let A(l) be the set of points s such that m is either equal or adjacent to l
in Υ∗ but not in Υ.

Lemma 7.4.6 The following assertions hold:

(i) the point-wise stabilizer of l in G acts transitively both on C(l) and
on A(l);

(ii) Γ(l) is the disjoint union of l, C(l) \ l and A(l) \ l and this partition
is independent on the particular choice of p ∈ l;

(iii) R[Γ(l)] is elementary abelian of order at most 28;

(iv) R[A(l)] has order 23 and R[A(l)]# = {zs | s ∈ A(l)};

(v) R[C(l)] has order 27.

Proof. (i) is easy to deduce from the suborbit diagram of Υ in view
of (7.1.4 (i)). (ii) follows from (i) and (7.3.2). Since Γ(l) = Γ(p) ∩ Γ(q)
(compare (7.1.4 (ii))), the commutator subgroups of R1(p) and R1(q) are
generated by cp and cq, respectively, and cp 6= cq by (7.4.5), R[Γ(l)] is
elementary abelian. Since R1(p) contains the extraspecial group 21+12

+ with
index 2, an abelian subgroup in R1(p) has order at most 28 and we obtain
(iii). As we have seen in the proof of (7.4.3), A(l) is the set of non-identity
elements contained in Q(s) for every s ∈ A(l), which immediately gives
(iv). Since R1(p) ∼= R(S∗), (v) follows from (4.4.8 (i)) and (5.6.3). 2

Lemma 7.4.7 The following assertions hold:

(i) R[C(l)] does not contain R[A(l)];

(ii) R[Γ(l)] is of order 28;

(iii) cp ∈ R[Γ(l)].

Proof. Let Σ = {p, l}, F = resG(Σ) and M be the action induced on
F by M := G(p) ∩ G(l). Then F ∼= G(S4(2)) and M ∼= Alt6 if G = Fi′24

and F ∼= G(Alt5) and M ∼= Sym5 if G ∼= J4. Clearly M normalizes both
R[C(l)] and R[A(l)]. By (4.4.8 (i)) and (5.6.3) Q5(l) := R[C(l)]/R[l] is
a 5-dimensional representation module for F and as a module for M it
contains a unique 1-dimensional submodule which we denote by Q1(l). By
(7.4.6 (iv)) R[A(l)]/R[l] is 1-dimensional. Suppose that R[A(l)] ≤ R[C(l)].
Then R[A(l)]/R[l] = Q1(l) and

Q4(l) := Q5(l)/Q1(l) = R[C(l)]/R[A(l)]

is the 4-dimensional irreducible representation module of F and M acts
transitively on the set of non-identity elements of Q4(l). Let λ = {l1 =
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l, l2, l3} be the line of the enriched system of H = resG(p) which is not a
line of H. This means that λ is an orbit of D := O3(G(p)/Q(p)). Let

Q = R[C(l1) ∪ C(l2) ∪ C(l3)]/R[A(l)].

Then Q is generated by the elements of Q4(l) and their images under D.
Moreover, if π ∈ Q4(l)# then T := 〈πd | d ∈ D〉 is 2-dimensional. So the
generators ofQ are indexed by the pairs (a, x) for a ∈ Q4(l)#, x ∈ T and the
relations as in (2.4.2) hold. By the letter lemma in view of the irreducibility
of M on Q4(l) and of D on T we conclude that Q is elementary abelian of
order 28 isomorphic to Q4(l)⊗ T . By (7.4.6 (iv)) R[A(l)] does not contain
cp which means that the full preimage of Q in R1(p) is abelian of order
211 which is impossible, since R1(p) ∼= 21+12

+ × 2. This contradiction proves
(i). Now (ii) follows from (i) in view of (7.4.6 (iii) - (v)). Since R[Γ(l)] is
a maximal abelian subgroup of R1(p), it contains the centre of R1(p), in
particular it contains cp and we have (iii). 2

Lemma 7.4.8 The subgroup

R[l]∗ = 〈zs, cs | s ∈ A(l)〉

is elementary abelian of order 24.

Proof. By (7.4.7) and its proof Q1(l) is the unique 1-dimensional M -
submodule in

R[Γ(l)]/R[A(l)] ∼= R[C(l)]/R[l] ∼= Q5(l).

Since 〈R[A(l)], cp〉/R[A(l)] is such a submodule, in view of the obvious
symmetry we conclude that R[l]∗ is the full preimage of Q1(l) in R[Γ(l)]
and the result follows. 2

Now we are ready to establish the final result of the section.

Proposition 7.4.9 The subgroup Y (p) = 〈zpcp〉 is independent on the par-
ticular choice of p.

Proof. By (7.4.8) R[l]∗ is elementary abelian of order 24. It contains
seven elements zs and seven elements cs for s ∈ A(l) which are all pairwise
different by (7.4.5). Thus all the seven products zscs must be equal to the
only remaining non-identity element in R[l]∗. Now the result follows from
the connectivity of Γ. 2

7.5 R1(p) is normal in Rbpc
In this section we assume (7.4.1) and prove the following.

Proposition 7.5.1 R1(p) is a normal subgroup in Rbpc = R[N(p)].

First of all by (7.3.3) we have the following
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Lemma 7.5.2 If q is a point collinear to p then R1(p)∩R1(q) is a maximal
abelian subgroup of index 2m−1 in R1(p) (where Q(p) ∼= 21+2m

+ ). 2

By (7.4.1) the group R1(p) is abelian and hence by (2.2.3) we have the
following

Lemma 7.5.3 Let (p, q, r) be a 2-path in Γ. Then the commutator [zp, zr]
is either zq or the identity. 2

Let r ∈ N(p) ∩ Γ2(p). In order to show that zr normalizes R1(p) it
is sufficient to indicate a generating set of elements in R1(p), whose zr-
conjugates are also in R1(p). Using (7.5.3) we produce a family of such
elements and then check that under an appropriate choice of r that this is
a generating family. Let

T0(r) = {p}, T1(r) = Γ(p) ∩ Γ(r), T2(r) =
⋃

q∈T1(r)

Γ(p) ∩ Γ(q),

T (r) = T0(r) ∪ T1(r) ∪ T2(r).

Lemma 7.5.4 If s ∈ T (r) then [zr, zs] ∈ R1(p).

Proof. If s ∈ T0(r)∪T1(r) then [zr, zs] = 1. Suppose that s ∈ T2(r) and
q is a vertex in T1(r) adjacent to s. Then by (7.5.3) [zr, zs] ∈ 〈zq〉 ≤ R1(p).
2

Let I1(r) and I(r) be the subgroups in R1(p) generated by the zs for all
s taken from T0(r) ∪ T1(r) and from T (r), respectively. Clearly

〈zp〉 ≤ I1(r) ≤ I(r)

and we can put I1(r) and I(r) to be the quotients over 〈zp〉 of I1(r) and
I(r), respectively. These quotients are clearly subspaces in R1(p) (when
the latter is treated as a GF (2)-vector space).

Since the representation (R,ϕu) is universal, R1(p) is a module for H =

G(p)/Q(p), which is isomorphic to Q̃(p)/〈ϕ̃(p)〉 by (7.4.1). Put

H(r) = (G(p) ∩G(r))Q(p)/Q(p).

Directly by the definition we have the following

Lemma 7.5.5 Both I1(r) and I(r) are H(r)-submodules in R1(p). 2

Let (R1(p), χ) be the representation of the (extended) point-line inci-
dence system of H = resG(p) as defined before (7.4.1). Let J1(r) and J(r)
be the sets of lines in G containing p and a point from T1(r) and T (r),
respectively. Since a point in G can not be collinear to exactly two points
on a line, we observe that

|J1(r)| = |T1(r)| and |J(r)| = |T (r)|.
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In these terms I1(r) and I(r) are generated by the images under χ of the
lines from J1(r) and J(r), respectively.

Up to conjugation in H the submodule I(r) depends on the number j
such that r ∈ Γj2(p). Since

|T1(r)| = |Γ(p) ∩ Γ(r)| = cj2

it is natural to expect that larger the cj2, I(r) is more likely to be the whole
R1(p). This informal expectation works, so we proceed according to it and
put

cα2 = max
1≤j≤t

cj2,

so that α = 3, 1, 1, 1 and cα2 = 27, 9, 63, 135 for G = Fi′24, J4, BM , and
M , respectively.

For the remainder of the section we assume that r ∈ Γα2 (p).

Lemma 7.5.6 There is a subgraph ∆ in Γ, such that

(i) ∆ contains p, r, Γ(p) ∩ Γ(r) and the Q(p)-orbit of r;

(ii) ∆ is isomorphic to the collinearity graph of the polar space P = P(Ω)
of the classical orthogonal group Ω isomorphic to Ω−8 (2), Ω+

6 (2),
Ω9(2) ∼= S8(2) and Ω+

10(2) for G = Fi′24, J4, BM , and M , respec-
tively;

(iii) the lines of P are those of G contained in ∆;

(iv) the action induced on ∆ by the stabilizer of ∆ in G contains Ω.

Proof. In the case G = Fi′24 we take ∆ to be the subgraph Θ as in
the proof of (7.3.8).

In the case G = J4 we first embed p and r in the sextet subgraph Ξ as in
(7.1.5). Then p and r can be treated as sextets refining a unique octad B,
say (compare Lemma 3.3.5). We take ∆ to be the subgraph in Ξ induced
by all the sextets refining B. Then the properties of ∆ stated in the lemma
follow from the basic properties of the S(5, 8, 24) Steiner system.

In the cases G = BM or M we take ∆ to be the subgraph Σ as in the
proof of (7.3.10) or Ψ as in the proof of (7.3.11), respectively. 2

Remark. We could take α = 1 in the case G = Fi′24 as well. Then
proceeding as in the case G = J4 we would produce a subgraph ∆ which is
the collinearity graph of P(Ω+

6 (2)).

It follows from the fundamental property of dual polar spaces that r is
collinear to exactly one point on every line containing p, which gives the
following

Lemma 7.5.7 J1(r) is the set of lines in the polar space P as in (7.5.6)
containing p. 2
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Let µ be the restriction to ∆ of the representation mapping ϕu and
Y be the subgroup in R generated by the image of µ, so that (Y, µ) is a
representation of P.

Lemma 7.5.8 (Y, µ) is the universal representation of P(Ω), so that Y is
elementary abelian, isomorphic to the natural orthogonal module of Ω.

Proof. The result is by comparison of the subgroup in G̃ generated by
the elements ϕ̃(x) taken for all x ∈ ∆ and (3.6.2). 2

Combining (7.5.7) and (7.5.8) we obtain our next result.

Lemma 7.5.9 The following assertions hold:

(i) I1(r) coincides with Y 1(p) = Y1(p)/Y0(p);

(ii) I1(r) is isomorphic to the universal representation group (module) of
resP(p);

(iii) I1(r) is the natural (orthogonal) module of Π ∼= Ω−6 (2), Ω+
4 (2), Ω7(2)

and Ω+
8 (2) for G = Fi′24, J4, BM , and M , respectively;

(iv) the action induced by H(r) on I1(r) contains Π. 2

The square and the commutator maps on R1(p) induce on R1(p) a
quadratic and a related bilinear forms which are H-invariant. These forms
will be denoted by the same letters θ and β as the forms introduced before
(7.1.4). This should not course any confusion in view of (7.4.1). Notice that
if G = Fi′24, J4, or M then β is nonsingular (isomorphic to the correspond-
ing form on Q(p)) and if G = BM then the radical of β is one dimensional
and coincides with the kernel of the homomorphism

R1(p) ∼= Λ
(23) → Λ

(22) ∼= Q(p).

Since Y is abelian by (7.5.8) we have the following.

Lemma 7.5.10 The submodule I1(r) is totally singular with respect to β
and contains the radical of β. 2

The following result is of a crucial importance.

Lemma 7.5.11 The orthogonal complement of I1(r) with respect to β is
the only maximal H(r)-submodule in R1(p) containing I1(r).

Proof. If G = Fi′24 then the result is immediate, since I1(r) is a
maximal totally singular subspace on which H(r) acts irreducibly.

In the remaining three cases we make use of the fact that both cα2 and
nα (which is the number of Q(p)-orbits in Γα2 (p), equivalently, the index of
H(r) in H) are odd numbers. This means that both H(r) and the stabilizer
in H(r) of a line l from J1(r) contain a Sylow 2-subgroup S2 of H. We claim
that S2 fixes a unique hyperplane in R1(p) which contains the radical of β
and that this hyperplane is the orthogonal complement of l with respect to
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β. This claim is try by (4.4.9), (5.2.4), and (5.3.4) for G = J4, BM and

M , respectively (notice that the hyperplanes in Λ
(23)

containing the radical

are in a natural bijection with the hyperplanes in Λ
(22)

). Hence an H(r)-
submodule of R1(p) containing I1(r) must be contained in the intersection
of the P (l) taken for all l ∈ J1(r) and the result follows. 2

Now in order to establish the equality I(r) = R1(p) all we need is to
prove the following.

Lemma 7.5.12 There is a line l1 ∈ J1(r) and a line l2 ∈ J(r) such that
β(l1, l2) = 1.

Proof. As above in this chapter let Υ and Υ∗ denote the collinearity
graph of H = resG(p) and of the enriched point-line incidence system of H,
respectively. Then J1(r) and J(r) are subsets of the vertex set. Further-
more, J(r) is the union of J1(r) and the set of vertices adjacent in Υ∗ to a
vertex from J1(r). Let l1 ∈ J1(r). We have to show that there is a vertex
in J1(r) adjacent in Υ∗ to a vertex which is not perpendicular to l1 with
respect to β. By (7.5.6) and its proof we can easily identify J1(r).

If G = Fi′24 then J1(r) induces the Schläfli subgraph (cf. Lemmas 4.14.9
and 4.14.10 in [Iv99]), it contains 10 vertices from Υ(l1) and 16 vertices
from Γ1

2(l1). Since the vertices from Υ1
3(l1) are not perpendicular to l1 with

respect to β, the result is immediate from the suborbit diagram of Υ.
Let G = J4. Then by (7.5.9 (iii)) the subgraph A in Υ∗ induced by

J1(r) is a 3 × 3 grid. Using the fact that in this case the subgraph ∆
is contained in the sextet subgraph Ξ, it is easy to check that one of the
parallel classes of triangles in A must be triangles from the enriched but not
from the original point-line incidence system. Hence J1(r) is the complete
preimage of a triangle with respect to the covering

Υ ∼= Γ(G(3 ·M22))→ Γ(G(M22)).

Hence J1(r) contains a vertex from Υ1
3(l1) and since the vertices in Γ2

3(x)
are not perpendicular to l1 the result is again immediate from the suborbit
diagram of Υ.

If G = BM then J1(r) is the point-set of a G(S6(2))-subgeometry in H,
it contains a vertex from Υ1

2(l1) which is adjacent to a vertex from Υ3(l1)
and the latter is not perpendicular to l1.

Finally, if G = M , then the result is immediate from the suborbit
diagram since the vertices in Υ1

3(l1) are not perpendicular to l1. 2

The results (7.5.10) and (7.5.11) can be summarized in the following.

Proposition 7.5.13 If r ∈ Γα2 (p), then zr normalizes R1(p). 2

We we are well prepared to prove the final result of the section.

Lemma 7.5.14 Let Rbpc′ be the subgroup in Rbpc generated by R1(p) and
the elements zr taken for all r ∈ Γα2 (p). Then

(i) Rbpc′ = Rbpc if G = Fi′24, BM , or M ;
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(ii) Rbpc′ has index 2 in Rbpc if G = J4;

(iii) (7.5.1) holds, i.e., R1(p) is normal in Rbpc.

Proof. Let q ∈ Γ(p). Then by (7.5.2) the quotient X of R1(q) over
R1(p)∩R1(q) is elementary abelian of order 2m−1. Furthermore the orbits
of the action of G(p) ∩G(q) on this quotient are described in Table V. By
(7.3.5) the elements zr for r ∈ Γα2 (p)∩Γ(q) map onto the orbit O of length
6, 15, 77 and 759 for G = Fi′24, J4, BM , and M , respectively. In the first,
third and fourth cases O generates the whole X. Indeed, in the latter two
cases X is irreducible and in the first case O is outside the unique proper
submodule in X, so (i) follows.

Suppose that G = J4. Then the elements r ∈ Γα2 (p) are contained in
O2(G(p)) (which has index 2 in G(p)) and hence the index of Rbpc′ in Rbpc
is at least 2. Let us show that it is exactly 2. The orbit O generates the
unique codimension 1 submodule X ′ in X. On the other hand, by (7.3.5
(ii)) and (7.3.9) the orbit O1 of length 10 formed by the images of the
elements zs for s ∈ Γ3

2(p) ∩ Γ(p) generates the whole X. Hence the set
E = {zs | s ∈ Γ3

2(p)} together with R1(p) generates the whole Rbpc. Let us
say that two elements zs and zt from E are equivalent if zs = zty for some
y ∈ Rbpc. Since [X : X ′] = 2 we conclude that two elements zs and zt are
equivalent whenever s and t are adjacent to a common vertex in in Γ(p).
Now it is very easy to see that all the elements in E are equivalent and (ii)
is established.

By (i), (ii) and (7.5.13) in order to prove (iii) all we have to show is that
in the case G = J4 for every s ∈ Γ3

2(p) and q ∈ Γ(p) we have [zs, zq] ∈ R1(p).
But this is quite clear since by the above paragraph zs = zty for some t
adjacent to q and y ∈ Rbpc′. 2

7.6 Rbpc is isomorphic to G̃(p)

By (7.5.1) we can consider the factor-group

Rbpc = Rbpc/R1(p).

Since the elements ϕ̃(r) taken for all r ∈ N(p) generate the stabilizer G̃(p)

of p in G̃, the homomorphism ψ : R → G̃ induces a homomorphism ψ of
Rbpc onto

H̃ := G̃(p)/O2(G̃(p))

(isomorphic to 32 · U4(3).22, 3 · AutM22, Co2, and Co1 for G = Fi′24, J4,
BM , and M).

In order to complete the proof of (7.2.4 (i)) it is sufficient to show that
ψ is an isomorphism, which of course can be achieved by showing that the
order of Rbpc is at most that of H̃.

Put δ = 1, 1, 2, and 1 for G = Fi′24, J4, BM , and M , respectively. Let
Z be the set of images in Rbpc of the elements zr taken for all r ∈ Γδ2(p)
and Rbpc∗ be the subgroup in Rbpc generated by Z.
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Lemma 7.6.1 The following assertions hold:

(i) Rbpc∗ = Rbpc if G = BM or M and Rbpc∗ has index 2 in Rbpc if
G = Fi′24 or J4;

(ii) ψ(Rbpc∗) = O2(H̃);

(iii) O2(G(p)) is in the kernel of the action of G(p) on Rbpc∗;

(iv) ψ maps Z bijectively onto a conjugacy class X of involutions in

O2(H̃);

(v) X is the class of 2A, 2A, 2B and 2A involutions in O2(H̃) for G =
Fi′24, J4, BM , and M , respectively.

Proof. (i) and (ii) follow from the proof of (7.5.14) and its proof. Recall
that Rbpc∗ is also generated by the images of the elements zr taken for all
r ∈ Γ1

2(p). Let ∆ be the subgraph in Γ which is as in (7.5.6) for G = J4,
BM and M and as in the remark after that lemma for G = Fi′24. Then by
(3.6.2 (iii)) the images of the elements zr for all r ∈ ∆∩Γ1

2(p) are the same.
Since the stabilizer of ∆ in G(p) contains Q(p), (iii) follows. Since kδ = nδ
in terms of Section 7.3, the equality sQ(p) = tQ(p) for s, t ∈ Γδ2(p) holds if
and only if s and t are in the same Q(p)-orbit, we obtain (iv). Finally (v)
is by (7.3.5). 2

Let I be the involution geometry of O2(H̃)/Z(O2(H̃)), whose points
are the X -involutions (where X is as in (7.6.1 (v))) and whose lines are the
X -pure Kleinian four-subgroups. Then in notation of the previous chapter
I is I(U4(3)), I(M22)), I(Co2, 2B) and I(Co1) for G ∼= Fi′24, J4, BM and
M , respectively. By (7.6.1 (iv)) (ψ)−1 is a bijection of the point-set of I
onto Z, the latter being a generating set of involutions in Rbpc∗. On the

other hand, by (6.3.5), (6.4.4), (6.5.7) and (6.6.3) O2(H̃) is the universal
representation group of I. Thus in order to achieve the goal of this section
it is sufficient to show that (ψ)−1 maps every line of I onto a Kleinian
four-subgroup (i.e., that (Rbpc∗, (ψ)−1) is a representation of I). Towards
this end we consider subgroups generated by various subsets of Z.

Lemma 7.6.2 Let q be a point collinear to p, l be the line of G containing
p and q (so that l is a point of H = resG(p)). Let Zq be the set of images in
Z of the elements zr taken for all r ∈ Γδ2(p)∩Γ(q). Then for G = Fi′24, J4,
BM , and M the set Zq is of size 15, 15, 330, and 759, respectively. The
subgroup Tq in Rbpc∗, generated by Zq is elementary abelian of order 24,
24, 210 and 211, respectively, and it maps isomorphically onto O2(H(l)).

Proof. The result is immediate from (7.4.1) and (7.6.1 (iv)) in view of
Table V. 2

Lemma 7.6.3 Let G = Fi′24 or J4 and Ξ be the sextet subgraph in the
collinearity graph Γ of G as in (7.1.5), containing p. Let ZΞ be the set
of images in Z of the elements zr taken for all r ∈ Γδ2(p) ∩ Ξ and let TΞ

be the subgroup in Rbpc∗ generated by ZΞ. Then ZΞ is of size 15, TΞ is
elementary abelian of order 24 and
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(i) if G = Fi′24, then TΞ maps isomorphically onto O2(H(w)), where w
is an element of type 3 in H;

(ii) if G = J4, then TΞ maps isomorphically onto O2(H(S)), where S is
a G(3 · S4(2))-subgeometry in H.

Proof. By (4.3.1) the elements zr taken for all r ∈ Ξ generate in R an
elementary abelian subgroup of order 211 which maps isomorphically onto
O2(X), where X ∼ 211.M24 is the stabilizer of Ξ in G. By (4.3.2) the image
TΞ of this subgroup in Rbpc∗ is elementary abelian of order 24. 2

Finally we obtain the main result of the section.

Proposition 7.6.4 The following assertions hold:

(i) (Rbpc∗, (ψ)−1) is a representation of the involution geometry I;

(ii) Rbpc∗ ∼= O2(H̃);

(iii) Rbpc ∼= G̃(p).

Proof. The assertion (i) follows from (6.4.1), (6.3.2), (6.5.3 (i)) and
(6.6.1) for G = Fi′24, J4, BM and M , respectively. We deduce (ii) from (i),
applying, respectively (6.4.4), (6.3.5), (6.5.7) and (6.6.3). Now (iii) follows
from (i) and (ii) in view of (7.6.1 (i)). 2

7.7 Generation of G̃(p) ∩ G̃(q)

Let p and q be collinear points in G and let l be the line containing p and
q. Let K̃−(l), K̃+(l) and K̃(l) be the kernels of the action of G̃(l) on the
point-set of l, on the set of elements of type 3 and more incident to l and
on resG(l), respectively. Then K̃(l) = O2(G(l)), K̃+(l)/K̃(l) ∼= Sym3 and

K̃−(l) coincides with the subgroup

G̃(p) ∩ G̃(q)

we are mainly interested in this section. Recall that ϕ̃ is the mapping which
turns G̃ into a representation group of G and that N(p) is the set of points
in G which are at distance at most 2 from p in the collinearity graph Γ of G
and which commute with p (as involutions in G). The goal of this section
is to prove the following.

Proposition 7.7.1 The elements ϕ̃(r) taken for all r ∈ N(p) ∩N(q) gen-

erate K̃−(l) = G̃(p) ∩ G̃(q).

The following statement is easy to deduce from the shape of the
parabolic subgroups corresponding to the action of G̃ on G.

Lemma 7.7.2 For G̃ = 3 · Fi′24, J4, 2 · BM , and M , respectively the
following assertions hold:
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(i) the kernel K̃(l) has order 217, 217, 233, and 235;

(ii) the quotient K̃−(l)/K̃(l) ∼= G̃(l)/K̃+(l) is isomorphic to 3 · Alt6,
Sym5, AutM22, and M24. 2

Lemma 7.7.3 The following assertions hold:

(i) the elements ϕ̃(r) taken for all r ∈ Γ(p) ∪ Γ(q) generate K̃+(l);

(ii) the elements ϕ̃(r) taken for all r ∈ (Γ(p) ∩ N(q)) ∪ (Γ(q) ∩ N(p))

generate K̃(l) = O2(K̃−(l)).

Proof. It is clear (see for instance (7.4.1)) that the elements ϕ̃(r) taken

for all r ∈ Γ(p) generate Q̃(p). Then the result is by (7.3.3) and the order
reason. 2

Let Y be the residue in G of the flag {p, l} and Y be the flag-transitive

automorphism group of Y induced by K̃−(l). Then for G = Fi′24, J4, BM ,
and M , respectively, the geometry Y is isomorphic to G(S4(2)), G(Alt5),
G(M22) and G(M24) while Y ∼= Alt6, Sym5, AutM22, and M24. The fol-
lowing result follows from the basic properties of Y and Y .

Lemma 7.7.4 In the above terms the group Y is generated by the subgroups
O2(Y (π)) taken for all points π in Y. 2

Notice that π in (7.7.4) is a plane in G incident to p and l. For such
a plane π let s be a point incident to π but not to l. Then clearly every
r ∈ Γ(s) is at distance at most 2 from both p and q. We know that the

elements ϕ̃(r) taken for all r ∈ Γ(s) generate Q̃(s). The latter subgroup
stabilizes π and induces on its point-set an action of order 4. It is easy to
see that the kernel Q̃(s, π) of this action is generated by the elements ϕ̃(r)
taken for all r ∈ Γ(s) ∩N(p) ∩N(q).

Lemma 7.7.5 The image of Q̃(s, π) in Y = K̃−(l)/K̃(l) coincides with
O2(Y (π)).

Proof. The result is by the order consideration in view of (7.3.3). 2

Now (7.7.1) is by (7.7.3 (ii)) and (7.7.5) in view of (7.7.4).

7.8 Reconstructing the rank 3 amalgam

In this section we use (7.2.4) in order to deduce (7.2.3). We know by (7.2.4
(i)) that the restriction of the homomorphism

ψ : R→ G̃

to Rbpc := R[N(p)] (where N(p) is the set of points commuting with p and
at distance at most 2 from p in the collinearity graph of G) is an isomorphism

onto G̃(p) which is the stabilizer of p in the (possibly unfaithful) action of
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G̃ on G. Let ψp denote the restriction of ψ to Rbpc. By (7.2.4 (ii)) if r
is a point collinear to p then the restrictions of ψp and ψr to Rbpc ∩ Rbrc
induce the same isomorphism (which we denote by ψpr) onto G̃(p) ∩ G̃(r).

We formulate explicitly an important property of G.

Lemma 7.8.1 For a point p of G the set Γ(p) of points collinear to p
(treated as central involutions in G) generate an extraspecial 2-group Q(p).
A line and plane containing p are elementary abelian subgroups in Q(p) of
order 22 and 23, respectively. If π is a plane then its stabiliser G(π) in G
induces the natural action of L3(2) on the set of 7 points contained in π.2

Let l = {p = p1, p2, p3} be a line containing p and G̃(l) be the stabilizer

of l in G̃. Then G̃(l) induces the group Sym3 on the point-set of l. If K̃−(l)
is the kernel of this action then

K̃−(l) =

3⋂
i=1

G̃(pi).

The images of the G̃(l)∩ G̃(pi) in the quotient G̃(l)/K̃−(l) for i = 1, 2, and
3 are of order 2 and they generate the whole quotient.

This observation suggests the way how a preimage of G̃(l) in R can be
defined. For 1 ≤ i ≤ 3 put

Rbpi, lc = ψ−1
pi (G̃(pi) ∩ G̃(l))

and
Rblc = 〈Rbpi, lc | 1 ≤ i ≤ 3〉.

Lemma 7.8.2 The following assertions hold:

(i) the restriction of ψ to Rblc is an isomorphism onto G̃(l) (we denote
this isomorphism by ψl);

(ii) the restriction of ψ to Rbpc∩Rblc is an isomorphism onto G̃(p)∩G̃(l).

Proof. Since ψpi is an isomorphism of Rbpic, it is immediate from the

definition that Rblc maps surjectively onto G̃(l) and in order to establish

(i) it is sufficient to show that the order of Rblc is at most that of G̃(l). Let

R−blc = ψ−1
pi (K̃−(l)).

Then by (7.2.4 (i), (ii)) R−blc is independent of the particular choice of i ∈
{1, 2, 3} and it is of index 2 (particularly it is normal) in Rbpi, lc for 1 ≤ i ≤
3. Hence R−blc is a normal subgroup in Rblc which maps isomorphically

onto K̃−(p). Hence to complete the proof of (i) it is sufficient to show
that Rblc := Rblc/R−blc is isomorphic to Sym3. Let τ i be the unique
non-trivial element in the image of Rbpi, lc, where 1 ≤ i ≤ 3. In order
identify Rblc with Sym3 it is sufficient to find elements τi in R such that
τiR
−blc = τ i and

〈τi | 1 ≤ i ≤ 3〉R−blc/R−blc ∼= Sym3.
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Towards this end let π be a plane containing l and q a point in π but not
in l. Since Q(p) is extraspecial and π is an elementary abelian subgroup of
order 23 in Q(p), it is easy to see that there is an element t1 ∈ Q(p) which
commutes with q and conjugates p2 onto p3. Then t1 ∈ G(q) and induces
the transposition (p1)(p2, p3) on the point-set of l. In a similar way we can
find elements t2 and t3 contained in G(q)∩Q(p2) and G(q)∩Q(p3), which
induce on l the transpositions (p2)(p1, p3) and (p3)(p1, p2), respectively.
Then

〈ti | 1 ≤ i ≤ 3〉K−(l)/K−(l) ∼= Sym3.

Let t̃i be a preimage of ti in G̃(q), 1 ≤ i ≤ 3, and τi = ψ−1
q (t̃i). Since ψq is

an isomorphism of Rbqc onto G̃(q) it is easy to see that the τi possess the
required property and the proof of (i) is complete. Now (ii) is immediate
from (i) and the definition of Rblc. 2

Now let π = {p = p1, p2, ..., p7} be a plane containing l (and hence p as

well). Then the stabiliser G̃(π) of π in G̃ induces on the point-set of π the
natural action of L3(2) (compare (7.8.1)) with kernel

K̃−(π) =

7⋂
i=1

G̃(pi)

and the image of G̃(π) ∩ G̃(pi) in G̃(π)/K̃−(π) is a maximal parabolic in
L3(2) isomorphic to Sym4. Put

Rbpi, πc = ψ−1
pi (G̃(pi) ∩ G̃(π))

and
Rbπc = 〈Rbpi, πc | 1 ≤ i ≤ 7〉.

Lemma 7.8.3 The following assertions hold:

(i) the restriction of ψ to Rbπc is an isomorphism onto G̃(π) (we denote
this isomorphism by ψπ);

(ii) the restrictions of ψ to Rbpc ∩Rbπc and to Rblc ∩Rbπc are isomor-

phisms onto G̃(p) ∩ G̃(π) and G̃(l) ∩ G̃(π), respectively.

Proof. Again by the definition Rbπc maps surjectively onto G̃(π). Let

R−bπc = ψ−1
pi (K̃−(π)).

By (7.2.4 (i), (ii)) since the points in π are pairwise collinear, R−bπc is
independent of the particular choice of i ∈ {1, ..., 7} and it is normal in
each Rbpi, πc and hence it is normal in Rbπc. Put Rbπc = Rbπc/R−bπc.
In order to prove (i) we have to show that Rbπc ∼= L3(2). We use the fact
that L3(2) is generated by the conjugacy class of its transvections.

Let τ̃(q,m) be an element from G̃(π) which induces on res−G (π) ∼=
pg(2, 2) the transvection whose centre is q (which is point) and whose axis
is m (which is a line containing q). Let

t(q,m) = ψ−1
q (τ̃(q,m))
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and t(q,m) be the image of t(q,m) in Rbπc. By (7.2.4) if r1 and r2 are any
two points fixed by τ̃(q,m) (i.e., r1, r2 ∈ m) then

ψ−1
r1 (τ̃(q,m)) = ψ−1

r2 (τ̃(q,m)),

which shows that t(q,m) is contained in Rbr, πc for every r ∈ m. Hence
Rbr, πc contains 9 elements t(q,m) and the images of these elements in
the quotient Rbπc generate the whole image of Rbr, πc in the quotient
(isomorphic to Sym4). Hence Rbπc is generated by the above defined 21
elements t(q,m). We claim that these elements form a conjugacy class in
Rbπc. Towards this end we need to show that for any two flags (q1,m1)
and (q2,m2) there is a flag (q3,m3) such that

t(q1,m1)t(q2,m2)t(q1,m1) = t(q3,m3).

The lines m1 and m2 always have a common point r, say. Then τ̃(q1,m1)

and τ̃(q2,m2) are contained in G̃(r) and the conjugate σ̃ of τ̃(q2,m2) by
τ̃(q1,m1) induces a transvection on π (the same as τ̃(q3,m3) for some flag
(q3,m3)). Then the image of ψ−1

r (σ̃) in Rbπc coincides with t(q3,m3) and

the claim follows. Since G̃(π)/K̃−(π) ∼= L3(2) is a homomorphic image of
Rbπc, by (6.1.2) we have either Rbπc ∼= L3(2) or Rbπc ∼= L3(2) × 2. We
can see inside the image of Rbp, πc in Rbπc that if l1, l2, l3 are the lines in
π containing p, then

t(p, l1)t(p, l2)t(p, l3) = 1,

which excludes the latter possibility and completes the proof of (i). Now
(ii) is immediate from (i) and the fact that the relevant restrictions are
surjective by the definition of Rbπc. 2

Now in order to complete the proof of (7.2.3) it is sufficient to show
that D generates the whole R. Let Φ = {p, l, π} be the flag associated
with D and write D(Φ) for D to emphasize the flag. Clearly it is sufficient
to show that the subgroup in R generated by D(Φ) contains the amalgam
D(Φ′) for every flag Φ′ of type {1, 2, 3} in G. Furthermore, since G, being
a geometry, satisfies the connectivity conditions, it is sufficient to consider
the case when |Φ ∩ Φ′| = 2.

In order to argue in a uniform way put Φ = {α1, α2, α3}. Once again

by the connectivity of G and the flag-transitivity of G̃ we have

G̃(α1) = 〈G̃(α1) ∩ G̃(α2), G̃(α1) ∩ G̃(α3)〉.

Since ψ is an isomorphism when restricted to D(Φ), we have

Rbα1c = 〈Rbα1c ∩Rbα2c, Rbα1c ∩Rbα3c〉.

Hence the subgroup in R generated by D({α1, α2, α3}) contains the amal-
gam D({α′1, α2, α3}) for every α′1 of appropriate type incident to α2 and
α3.

Thus (7.2.3) is proved and in view of (7.2.2) it implies (7.1.3).
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7.9 G(34371 ·BM)

In this section we prove

Proposition 7.9.1 The universal representation module of G(34371 ·BM)
is zero-dimensional.

Let G̃ = G(34371 ·BM), G = G(BM) and χ : G̃ → G be the corresponding
2-covering. Let (R,ϕu) be the universal representation of G, where R ∼=
2 · BM (cf. (7.1.3)). If ν is the composition of χ and ϕu, then clearly

(R, ν) is a representation of G̃. Let x̃ be a point of G̃ and x = χ(x̃). Put

H̃ = resG̃(x̃) ∼= G(323 · Co2), H = resG(x) ∼= G(Co2) and let µ denote the

2-covering of H̃ onto H induced by χ. Let Γ be the collinearity graph of G.

Lemma 7.9.2 For the representation (R, ν) the following assertions hold:

(i) R1(x̃) is of order 224 and the commutator subgroup of R1(x̃) is 〈ν(x̃)〉;

(ii) R1(x̃) ∼= Λ
(23)

is the universal representation group of H and the

universal representation module of H̃;

(iii) R1(x̃) is the universal representation group of the point-line incidence
system S = (Π, L) where Π = {x} ∪ Γ(x) and L is the set of lines of
G contained in Π.

Proof. Since ν is the composition of χ and ϕu, (i) follows from (7.1.3),
(7.1.2) and the definition of G in terms of central involutions in BM . (ii)

follows from (5.2.3) and (5.5.1). Since by (5.2.3), Λ
(23)

is the universal
representation of H, (iii) follows from (7.4.1). 2

Let Γ̃ be the collinearity graph of G̃ and S̃ = (Π̃, L̃) be the point-line

incidence system where Π̃ = {x̃} ∪ Γ̃(x̃) and L̃ is the set of lines of G̃
contained in Π̃. Notice that the 2-covering χ induces a morphism of S̃
onto the point-line system S as in (7.9.2 (iii)). Let (V, ψ) be the universal

abelian representation of G̃. Then by (2.6.2) and (5.5.1) the section V 1(x̃)

(defined with respect to Γ̃ of course) is a quotient of Λ
(23)

, in particular,

the representation of H̃ induced by ψ factored through the 2-covering µ :
H̃ → H.

By the above paragraph we observe that for ỹ, z̃ ∈ Π̃ we have ψ(ỹ) =

ψ(z̃) whenever χ(ỹ) = χ(z̃). Thus the restriction of ψ to Π̃ is a composition

of the morphism of S̃ onto S induced by χ and an abelian representation of
the point-line incidence system S. Hence by (7.9.2 (iii)) ψ(Π̃) is an abelian
quotient of the group R1(x̃). By (7.9.2 (i)) the commutator subgroup of
R1(x̃) is generated by the image of x̃ under the corresponding representa-
tions. From this we conclude that ψ(x̃) = 0 and since this holds for every
point x̃ the proof of (7.9.1) is complete.



Part II

Amalgams

139





Chapter 8

Method of group
amalgams

In this chapter we collect and develop some machinery for classification
the amalgams of maximal parabolics coming from flag-transitive actions on
Petersen and tilde geometries.

8.1 General strategy

Let G be a P - or T -geometry of rank n ≥ 3, let Φ = {x1, ..., xn} be a
maximal flag in G (where xi is of type i). Let G be a flag-transitive auto-
morphism group of G and

A = {Gi | 1 ≤ i ≤ n}

be the amalgam of maximal parabolics associated with this action and
related to the flag Φ (i.e., Gi = G(xi) is the stabilizer of xi in G). Then G
can be identified with the coset geometry C(G,A) and it is a quotient of the
coset geometry C(U(A),A) associated with the universal completion U(A)
of A. Our goal is to identify A up to isomorphism or more specifically
to show that it is isomorphic to the amalgam associated with a known
flag-transitive action.

Proceeding by induction on n we assume that

(a) the residue resG(x1) is a known flag-transitive P - or T -geometry;

(b) the action G1 = G1/K1 is a known flag-transitive automorphism
group of resG(x1);

(c) if L1 is the elemenwise stabilizer of the set of points collinear to p,
then K1/L1 is a known G1/K1-admissible representation module ofH
(which is quotient of V (resG(x1)) over a G1/K1-invariant subgroup.)

We achieve the identification ofA in a number of stages described below.

141
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Stage 1. Bounding the order of Gn.

At this stage (Chapter 9) we consider the action of G on the derived
graph ∆ = ∆(G) of G. Recall that the vertices of ∆ are the elements of
type n in G and two of them are adjacent whenever they are incident to a
common element of type n− 1. Then Gn is the stabilizer of the vertex xn
in this action. We assume that the residue resG(x1) is such that a so-called
condition (∗) (cf. Section 9.3) holds. Under this condition we are able to
bound the number of chief factors in Gn and their orders.

Stage 2. The shape of {G1, Gn}.

At this stage we match the structure of Gn against the possible struc-
ture of G1 about which we know quite a lot by the assumptions (a) – (c).
An inspection of the list of the known P - and T -geometries (which are
candidates for the residue of a point in G) and their flag-transitive auto-
morphism groups shows that either the condition (∗) holds (and hence Gn
is bounded on stage 1) or the universal representation module is trivial. In
the latter case we either exclude the possibility for the residue altogether
by Proposition 5 or bound the number of chief factors in G1 and Gn. As a
result of this stage (to be accomplished in Chapter 10) we obtain a limited
number of possibilities for the chief factors of G1 and Gn which satisfy cer-
tain consistency conditions. These possibilities (which we call shapes) are
given in Table VIII a and Table VIII b. These shapes are named by the
corresponding known examples if any.

Stage 3. Reconstructing a rank 2 subamalgam.

At this stage we start with a given shape from Table VIII and identify
up to isomorphism the amalgam B = {G1, G2} or X = {Gn, Gn−1}. In the
former case we call out strategy direct and in the latter we call it dual. Let
us first discuss the direct strategy. From stage 2 we know the chief factors
of G1. These factors normally leave us with a handful of possibilities for the
isomorphism types of G1 which depend on whether or not certain extensions
split. We need to identify B = {G1, G2} up to isomorphism. First we
determine the type of B . By this we understand the identification of G1

and G2 up to isomorphism and specification of G12 = G1∩G2 in G1 and G2

up to conjugation in the automorphism group of G1 and G2, respectively.
Since the action G1 of G1 on resG(x1) is known by the assumption (a), the
subgroup G12 of G1 is determined uniquely up to conjugation. Now for G2

we should consider all the groups containing G12 as a subgroup of index
3. Towards this end we consider the kernel K−2 of the action of G2 on the
point-set of x2 (which is clearly the largest normal subgroup of G2 contained
in G12). It can be shown that G2/K

−
2 is always isomorphic to Sym3 and

hence we should take for K−2 a subgroup of index 2 in G12 (there is always a
very limited number of such choices). Next we calculate the automorphism
group of K−2 . Often the existence of the required automorphisms (of order
3) of K−2 imposes some further restrictions on the structure of G1 which
specify G1 up to isomorphism. After the type of B is determined we apply
Goldschmidt’s lemma (8.3.2) to classify such amalgams up to isomorphism.
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Within the dual strategy K+
n−1 = Gn,n−1 is a uniquely determined (up

to conjugation) subgroup of Gn and Gn−1 contains K+
n−1 with index 2.

Stage 4. Reconstructing the whole amalgam A.

Here we start with the rank 2 subamalgam B = {G1, G2} or X =
{Gn, Gn−1} reconstructed on stage 3 and identify up to isomorphism the
whole amalgam A. If we follow the direct strategy then as soon as we know
that B = {G1, G2} is isomorphic to the similar amalgam coming from a
known example, we are done by (8.6.1). In the case of dual (or a mixed)
strategy we apply ad hoc arguments based on (8.4.2), (8.4.3), (8.5.1) and
similar to that used in the proof of (8.6.1).

8.2 Some cohomologies

In this section we summarize the information on first and second cohomol-
ogy groups to be used in the subsequent sections. If G is a group and V is
a GF (2)-module for G, then H1(G,V ) and H2(G,V ) denote the first and
the second cohomology groups of V (cf. Section 15.7 in [H59]). It is known
that each of these groups carries a structure of a GF (2)-vector space, in
particular it is an elementary abelian 2-group. The importance of these
groups is due to the following two well known results (cf. (17.7) in [A86]
and Theorem 15.8.1 in [H59], respectively). Another application of the first
cohomology is (2.8.2).

Proposition 8.2.1 If S = V : G is the semidirect product of V and G
with respect to the natural action, then the number of conjugacy classes of
complements to V in S is equal to the order of H1(G,V ). In particular all
the complements are conjugate if and only if H1(G,V ) is trivial. 2

Proposition 8.2.2 The number of isomorphism types of groups S which
contain a normal subgroup N , such that S/N ∼= G and N is isomorphic to
V as a G-module, is equal to the order of H2(G,V ). In particular every
extension of V by G splits (isomorphic to the semidirect product of V and
G) if and only if H2(G,V ) is trivial. 2

Let us explain the notation used in Table VI. By Vn we denote the
natural module of SL4(2) ∼= Alt5 or ΣL4(2) ∼= Sym5, considered as GF (2)-
module (notice that the action on the non-zero vectors is transitive). By Vo
we denote the orthogonal module of Ω−4 (2) ∼= Alt5 or O−4 (2) ∼= Sym5. The
orthogonal module is also the heart of the GF (2)-permutational module on
5 points. By Vs we denote the natural 4-dimensional symplectic module
for Sym6

∼= S4(2) (or for Alt6 = S4(2)′) and of dimension 6 for S6(2). As
usual C11 and C11 denote the irreducible Golay code and Todd modules for
M24 while C10 and C10 denote the irreducible 10-dimensional Golay code
and Todd modules for AutM22 or M22.

The dimensions of the first and second cohomology groups in Table VI
were calculated by D.F. Holt (whose cooperation is greatly appreciated)
using his share package “cohomolo” for GAP [GAP]. Most (if not all) of
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the dimensions were known in the literature. The first cohomologies of the
modules Vn, Vo and Vs are given in [JP76] and in [Pol71]. The dimensions
of H1(M24, C11) and H1(M24, C11) have been calculated in Section 9 of
[Gri74]. The first cohomology of C10 is given in (22.7) in [A97]. The second
cohomology of Vn and the non-triviality of H2(Vs, Sym6) are Theorems 2
and 3 in [Gri73] (the latter theorem is attributed to J. McLaughlin). The
triviality of H2(M24, C11) is stated in [Th79] (with a reference to Ph D
Thesis of D. Jackson.) Since a maximal 2-local subgroup in the Fischer
sporadic simple group Fi′24 is a non-split extension of C11 by M24, we know
that H2(M24, C11) must be non-trivial by (8.2.2).

Table VI. Cohomologies of some modules

G V dimV dimH1(G,V ) dimH2(G,V )

Alt5 Vn 4 2 0

Sym5 Vn 4 1 0

Alt5 Vo 4 0 0

Sym5 Vo 4 0 0

Alt6 Vs 4 1 0

Sym6 Vs 4 1 1

S6(2) Vs 6 1 1

M22 C10 10 1 0

AutM22 C10 10 1 1

M22 C10 10 0 0

AutM22 C10 10 0 0

M24 C11 11 0 0

M24 C11 11 1 1

The situation described in the first and second rows of Table VI deserves
further attention
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Lemma 8.2.3 Let A ∼= Alt5 ∼= SL2(4) and V = Vn be the natural module
of A treated as a 4-dimensional GF (2)-module. Let P = V : A be the
semidirect product with respect to the natural action. Let S be a subgroup
of AutP containing InnP (where the latter is identified with P ). Then P
is isomorphic to a maximal parabolic in PSL3(4) and

(i) P contains exactly four classes of complements to V and OutP ∼=
Sym4 acts faithfully on these classes;

(ii) if S/P is generated by a transposition then S is the semidirect product
of V and Sym5; S contains two classes of complements and it is
isomorphic to a maximal parabolic in PΣL3(4);

(iii) if S/P is generated by a fixed-point free involution then S is the
semidirect product with A of an indecomposable extension V (1) of V
by a 1-dimensional module; S contains two classes of complements to
V (1);

(iv) if S/P ∼= 3 then S is isomorphic to a maximal parabolic in PGL3(4);

(v) if S/P is the Kleinian four group then S is the semidirect product
with A of an indecomposable extension V (2) of V by a 2-dimensional
trivial module; S contains a single class of complements and the dual
of V (2) is the universal representation module of G(Alt5);

(vi) if S/P ∼= 22 and contains a transposition then S is the semidirect
product of V (1) and Sym5 containing two classes of complements;

(vii) if S/P ∼= 4 then S is a non-split extension of V (1) by Sym5;

(viii) if S/P ∼= Sym3 then S is isomorphic to a maximal parabolic in
PΓL3(4);

(ix) if S/P ∼= D8 then S is the semidirect product of V (2) and Sym5;

(x) if S/P ∼= Alt4 or Sym4 then S is the semidirect product of V (2)

(isomorphic to the hexacode module) and Alt5 × 3 or (Alt5 × 3).2
(considered as a subgroup of 3 · Sym6). 2

Let T ∼= 3·Sym6 and Vh be the hexacode module of T . Since Y = O3(T )
is of order 3 acting fixed-point freely on Vh, we immediately obtain the
following.

Lemma 8.2.4 Hk(3 · Sym6, Vh) is trivial for k = 1 and 2. 2

The following result is deduced from Table I in [Bel78] (see also
[Dem73]).

Proposition 8.2.5 Let d = dimHk(Ln(2),
∧i

V ), where k = 1 or 2, 1 ≤
i ≤ n− 1 and V is the natural module of Ln(2). Then one of the following
holds:

(i) d = 0;
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(ii) d = 1 and the triple (n, i, k) is one of the following: (3, 1, 1), (3, 2, 1),
(3, 1, 2), (3, 2, 2), (4, 2, 1), (4, 1, 2), (4, 3, 2), (5, 1, 2), (5, 4, 2). 2

The standard reference for the next result id [JP76].

Lemma 8.2.6 Let Vs be the natural 2n-dimensional symplectic module of
S2n(2). Then dimH1(S2n(2), Vs) = 1. 2

Notice the the unique indecomposable extension of the trivial 1-
dimensional module by Vs is the natural orthogonal module of S2n(2) ∼=
Ω2n+1(2).

Lemma 8.2.7 The following assertions hold:

(i) H1(Co1,Λ
(24)

) is trivial;

(ii) H1(Co2,Λ
(22)

) is 1-dimensional.

Proof. (i) Let G = Co1 and V = Λ
(24)

. Since V is self-dual, by (2.8.2)
we have dimH1(G,V ) = dimCV d(G), where V d is the largest indecom-

posable extension of a trivial module by V . Let Ṽ be an indecomposable
extension of the 1-dimensional (trivial) module by V . Let ϕ be the mapping
which turns V into a representation module of G(Co1), Φ be the image of

ϕ and Φ̃ be the preimage of Φ in Ṽ . Since the stabilizer in G of a point
from G(Co1) (isomorphic to 211 : M24) does not contain subgroups of index

2, G has two orbits in Φ̃. Then the hypothesis of (2.8.1) hold and Ṽ must
be a representation module of G(Co1), but since V is already universal by
(5.3.2), (i) follows.

(ii) Since Λ
(23)

is an indecomposable extension of the trivial module by

Λ
(22)

, and Λ
(22)

is self-dual H1(Co2,Λ
(22)

) is non-trivial. Put V = Λ
(23)

,
G = Co2 and let ϕ be the mapping which turns V into the universal
representation module of G(Co2) (compare 5.2.3 (v)) and let Φ be the image

of ϕ. Let Ṽ be an indecomposable extension of the 1-dimensional module
by V and Φ̃ be the preimage of Φ in Ṽ . In this case the point stabilizer
contains a subgroup of index 2, so in principal G could act transitively on
Φ̃. Suppose this is the case. Then for ṽ ∈ Φ̃ we have G(ṽ) ∼= 210 : M22. Let
Ξ be the point-set of a G(S6(2))-subgeometry S in G(Co2) so that |Ξ| = 63
and the setwise stabilizer S of Ξ in G is of the form 21+8

+ .S6(2) (compare

(5.2.1)). We identify Ξ with its image under ϕ and let Ξ̃ be the preimage

of Ξ in Ṽ . Let ṽ ∈ Ξ̃, then on one hand

S(ṽ) ∼= 210.24.Alt6 < 210.M22,

is the stabilizer in G(ṽ) of a G(S4(2))-subgeometry in G(M22). On the other
hand, S(ṽ) is a subgroup of index 2 in the stabilizer in S of a point from S
and hence

S(ṽ) ∼= 21+8
+ .25.Alt6,

which shows that S(ṽ) contains O2(S) and hence the latter is in the kernel

of the action of S on Ξ̃. Thus the submodule W̃ in Ṽ generated by the
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vectors from Ξ̃ is a module for S6(2) = S/O2(S) with an orbit of length

126 = |Ξ̃| on the non-zero vectors. On the other hand, it is easy to deduce
from the proof of (5.2.3) that the submodule W in V generated by the
vectors from Ξ is the universal (7-dimensional orthogonal) representation
module of S. By Table VI W is the largest extension of a trivial module by
the 6-dimensional symplectic module Vs for S6(2). Hence W̃ = W ⊕ U for
a 1-dimensional module U and there are no S-orbits of length 126, which
is a contradiction. Now arguing as in the case (i) we complete the proof.2

We will widely use the following theorem due to Gaschütz (cf. Theorem
15.8.6 in [H59] or (10.4) in [A86]).

Theorem 8.2.8 Let G be a group, p be a prime, V be an abelian normal
p-subgroup in G, and S be a Sylow p-subgroup in G. Then G splits over V
if and only if P splits over V . 2

In terms of cohomologies the above result can states that H2(G/V, V ) is
trivial if and only if H2(P/V, V ) is trivial. In fact this is an important con-
sequence of Gaschütz’ theorem which establishes an isomorphism between
H2(G/V, V ) and H2(P/V, V ) (cf. Theorem 15.8.5 in [H59]).

Lemma 8.2.9 Let G be a group and V be a GF (2)-module for G where
the pair (G,V ) is either from Table VI, except for (Alt5, Vn), or one of the

pairs (Co1,Λ
(24)

), (Co2,Λ
(22)

). Then the action of G on V is absolutely
irreducible.

Proof. This is all well known and easy to check. In fact, in each case
there is a vector v ∈ V # such that x is the only non-zero vector in V fixed
by G(x). 2

Notice that Alt5 preserves a GF (4) structure on its natural module Vn.

8.3 Goldschmidt’s lemma

In this section we discuss the conditions under which two rank 2 amalgams
are isomorphic.

Let A = {A1, A2} and A′ = {A′1, A′2} be two amalgams, where B =
A1 ∩ A2 and B′ = A′1 ∩ A′2; ∗i and ∗′i are the group product operations in
Ai and A′i, respectively, for i = 1 and 2. Recall that an isomorphism of A
onto A′ is a bijection ϕ of

A1 ∪A2 onto A′1 ∪A′2,

which maps Ai onto A′i and such that the equality

ϕ(x ∗i y) = ϕ(x) ∗′i ϕ(y)

holds whenever x, y ∈ Ai for i = 1 or 2. Equivalently, the restrictions ϕA1

and ϕA2 of ϕ to A1 and A2 are isomorphisms onto A′1 and A′2, respectively.
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We say that the amalgams A and A′ as above have the same type if
for i = 1 and 2 there is an isomorphism ψ(i) of Ai onto A′i such that
ψ(i)(B) = B′. The pair π = (ψ(1), ψ(2)) of such isomorphisms will be called
the type preserving pair. Certainly, being of the same type is an equivalence
relation.

If ϕ is an isomorphism of A onto A′ then clearly (ϕA1 , ϕA2) is a type
preserving pair. On the other hand, it is easy to see that the type of A is
determined by

(1) the choice of A1 and A2 up to isomorphism and

(2) the choice of B as subgroup in A1 and A2 up to conjugation in the
automorphism groups of A1 and A2, respectively.

As an illustration we present an example of a pair of non-isomorphic
amalgams which are of the same type.

Let P ∼= Sym8 act as the automorphism group on the complete graph Γ
on 8 vertices and let P = {P1, P2} be the amalgam formed by the stabilizers
in P of two distinct (adjacent) vertices x and y. Then

P1
∼= P2

∼= Sym7 and B ∼= Sym6.

Let P ′ ∼= U3(5) : 2 act as the automorphism group on the Hoffman-
Singleton graph Γ′ (cf. [BCN89]) and let P ′ = {P ′1, P ′2} be the amalgam
formed by the stabilizer in P ′ of two adjacent vertices x′ and y′ of Γ′. Then

P ′1
∼= P ′2

∼= Sym7 and B′ ∼= Sym6.

Since the subgroups in Sym7 isomorphic to Sym6 form a single conjugacy
class, it is clear that the amalgams P and P ′ have the same type. On the
other hand, these amalgams are not isomorphic for the following reason.

Let g ∈ P be an element which swaps the vertices x and y and g′ ∈ P ′ be
an element which swaps x′ and y′. Then g conjugates P1 onto P2 and vice
versa while g′ does the same with P ′1 and P ′2. Since the setwise stabilizer of
{x, y} in P is Sym6×2, g can be chosen to centralize B. On the other hand,
the setwise stabilizer of {x′, y′} in P ′ is AutSym6, so g′ always induces an
outer automorphism of B′ ∼= Sym6. Since Sym7 has a unique faithful
permutational representation of degree 7 the cycle type of an element from
Sym7 is well defined (unlike the cyclic type of an element of Sym6). By
the above, a transposition from P1, which is contained in B, is also a
transposition in P2 while a transposition from P ′1, which is contained in B′,
is a product of three disjoint transpositions in P ′2. This shows that P and
P ′ can not possibly be isomorphic. (Here we have used the well known fact
that if we fix a degree 6 faithful permutational representation of Sym6 then
the image of a transposition under an outer automorphism is a product of
three disjoint transpositions.)

It is clear (at least in principle) how to decide whether or not two
amalgams have the same type. In the remainder of the section we discuss
how to classify the amalgams of a given type up to isomorphism.
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One may notice from the above example that the existence of non-
isomorphic amalgams of the same type is somehow related to “outer” au-
tomorphisms of the Borel subgroup B. We are going to formalize this
observation.

Let A = {A1, A2} and A′ = {A′1, A′2} be two amalgams of the same
type and let π = (ψ(1), ψ(2)) be the corresponding type preserving pair. If

the restrictions ψ
(1)
B and ψ

(2)
B of ψ(1) and ψ(2) to B coincide, then clearly

there is an isomorphism ϕ of A onto A′ such that ψ(i) = ϕAi for i = 1 and
2. In general

δ(π) = (ψ
(2)
B )−1ψ

(1)
B

is an element of D = AutB.

Let χ(1) and χ(2) be automorphisms of A1 and A2, respectively, that
normalize B. Then

π′ = (ψ(1)χ(1), ψ(2)χ(2))

is another type preserving pair and

δ(π′) = (χ
(2)
B )−1δ(π)χ

(1)
B ,

where χ
(i)
B (the restriction of χ(i) to B) is an element of the subgroup Di in

D which is the image of the normaliser of B in AutAi (under the natural
mapping). Notice that by the definition every element of Di is of the form

χ
(i)
B for a suitable χ(i) ∈ NAutAi(B).

Lemma 8.3.1 In the above terms A and A′ are isomorphic if and only if
δ(π) ∈ D2D1.

Proof. Suppose first that δ(π) = d2d1, where di ∈ Di for i = 1, 2.

Choose χ(i) ∈ NAutAi
(B) so that d−1

1 = χ
(1)
B and d2 = χ

(2)
B . Then for

the type preserving pair π′ = (ψ(1)χ(1), ψ(2)χ(2)) the automorphism δ(π′)
is trivial, which proves the required isomorphism between the amalgams.

Now if ϕ is an isomorphism of A onto A′, then for the type preserving
pair ε = (ϕA1

, ϕA2
) the automorphism δ(ε) is trivial. On the other hand,

χ(i) = (ψ(i))−1ϕAi
is an automorphism of Ai normalizing B and as we have

seen above

δ(π) = (χ
(2)
B )−1δ(ε)χ

(1)
B ,

hence the result. 2

The next proposition which is a direct consequence of (8.3.1) is known
as Goldschmidt’s lemma (cf. (2.7) in [Gol80]).

Proposition 8.3.2 Let A = {A1, A2} be a rank two amalgam, where B =
A1 ∩ A2 is the Borel subgroup. Let D = AutB and let Di be the image
in D of NAutAi

(B) for i = 1 and 2. Then a maximal set of pairwise non-
isomorphic amalgams having the same type as A is in a natural bijection
with the set of double cosets of the subgroups D1 and D2 in D. 2
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Since both D1 and D2 contain the inner automorphisms of B the double
cosets of D1 and D2 in D are in a bijection with the double cosets of O1

and O2 in O where O = OutB and Oi is the image of Di in O for i = 1
and 2.

If B = {Sym7, Sym7} is the amalgam from the above example, then
O = OutSym6 is of order 2 while both O1 and O2 are trivial. Hence
there are two double cosets and {B,B′} is the complete list of pairwise
non-isomorphic amalgams of the given type.

In fact (8.3.2) is a very general principle which classifies the ways to
“amalgamate” two algebraic or combinatorial systems of an arbitrary na-
ture over isomorphic subobjects. Exactly the same argument works and
gives the same result (compare [Th81] and [KL98]). Of course in the gen-
eral case there is no such thing as an inner automorphism.

8.4 Factor amalgams

Let A = {Ai | 1 ≤ i ≤ n} be an amalgam of rank n and M be a normal
subgroup in A. This means that M is a subgroup in the Borel subgroup
B = ∩ni=1Ai which is normal in Ai for every 1 ≤ i ≤ n. Then we can
construct the factor amalgam

A = A/M = {Ai/M | 1 ≤ i ≤ n}

whose elements are the cosets of M in Ai for all 1 ≤ i ≤ n and group oper-
ations are defined in the obvious way. Notice that the universal completion
(U(A), ν)) of A is a completion of A which is the quotient of (U(A), ν) over
the subgroup ν(M). More generally, for every completion (G,ϕ) of A we
can construct its quotient over ϕ(M), which is a completion of A. We are
interested in the following situation:

Hypothesis A. Let A = {Ai | 1 ≤ i ≤ n} be an amalgam, M be a
normal subgroup in A and A = A/M be the corresponding factor amalgam.
Suppose further that (G,ϕ) is a faithful completion of A; (G1, ϕ1) and
(G2, ϕ2) are faithful completions of A such that (G,ϕ) is the quotient of
(G1, ϕ1) and (G2, ϕ2) over ϕ1(M) and ϕ2(M), respectively.

We consider the above completions as quotients of the universal com-
pletion (U(A), ν) of A. Since the (Gj , ϕj) are assumed to be faithful, the
universal completion is faithful. In order to simplify the notation we iden-
tify M with ν(M). Let K1, K2 and K be the kernels of the natural homo-
morphisms of U(A) onto G1, G2 and G, respectively. Then (G1, ϕ1) and
(G2, ϕ) are isomorphic if and only if K1 = K2.

Lemma 8.4.1 Under Hypothesis A we have

(i) K = K1M = K2M ;

(ii) K1 ∩M = K2 ∩M = 1.

Proof. (i) follows from the assumption that (G,ϕ) is a quotient of
(Gj , ϕj) for j = 1, 2, while (ii) holds since the (Gj , ϕj) are faithful. 2
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Lemma 8.4.2 Under Hypothesis A if the centre of M is trivial, then the
completions (G1, ϕ1) and (G2, ϕ2) are isomorphic.

Proof. By (8.4.1) for j = 1 and 2 the subgroups Kj and M are disjoint
normal subgroups in U(A), hence they centralize each other. Hence for
i = 1 and 2 the subgroup Ki is a complement to Z(M) in CK(M). If
Z(M) = 1 then clearly K1 = CK(M) = K2 and the result follows. 2

By the above lemma the centre Z = Z(M) ofM deserves a further study.
In view of Hypothesis A we can define an action of G on Z which coincides
with the action of Gj on ϕj(M) (identified with M) by conjugation for
j = 1 and 2.

Suppose that K1 6= K2, then K1/(K1∩K2) is isomorphic to a nontrivial
subgroup N in Z which is normalized by the action of G on Z(M). Let

(Ĝ, ϕ̂) be the completion of A which is the quotient of (U(A), ν) over the

normal subgroup (K1∩K2)M . Then (Ĝ, ϕ̂) is a completion of A and (G,ϕ)

is its quotient over the subgroup N̂ = K/(K1 ∩K2)M , isomorphic to N .

Lemma 8.4.3 Under Hypothesis A either (G1, ϕ1) and (G2, ϕ2) are iso-
morphic or there is a nontrivial subgroup N in the centre of M normalized
by the action of G and a completion (Ĝ, ν̂) of A such that there is a normal

subgroup N̂ in Ĝ isomorphic to N and the isomorphism commutes with the
action of G = Ĝ/N̂ ; (G,ϕ) is the quotient of (Ĝ, ϕ̂) over N̂ .

8.5 L3(2)-lemma

In this section we apply the technique developed in the previous section to
a particular situation which is important for establishing uniqueness of the
rank 3 amalgam C = {G1, G2, G3} when the rank 2 amalgam B = {G1, G2}
is given and satisfies certain properties.

When the amalgam B is given (usually it is isomorphic to the amal-
gam associated to a known example) we can indicate G13 and G23 inside
G1 and G2, respectively, by considering the actions of G1 and G2 on the
corresponding residues resG(x1) and resG(x2). The residue res−G (x3) is a

projective plane of order 2 on which G3 induces L3(2) with kernel K−3 (so
that K−3 is the largest subgroup in G123 normal in both G13 and G23).
This enables us first to indicate K−3 and then put Gi3 = NGi(K

−
3 ) for i = 1

and 2. Since G13 and G23 are the maximal parabolics associated with the
action of G3 on resG(x3) we have

G13/K
−
3
∼= G23/K

−
3
∼= Sym4.

Let D = {G13, G23}, G̃3 be the universal completion of D and ψ : G̃3 → G3

be the natural homomorphism. In order to establish the uniqueness of C
we need to show that the kernel K of ψ is uniquely determined. Since both
K−3 and K are normal subgroups in G̃3 and the restriction of ψ to K−3 is
an isomorphism, K ≤ C

G̃3
(K−3 ).
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Lemma 8.5.1 In the above terms suppose that CGi3
(K−3 ) = 1 for i = 1

and 2. Then K = C
G̃3

(K−3 ), in particular, K is uniquely determined.

Proof. The result follows from the observation that L3(2) ∼= G3/K
−
3

is simple and hence by the hypothesis CG3
(K−3 ) = 1. 2

Now suppose that Z = Z(K−3 ) is non-trivial. If there are two possible
kernels K and K ′, say, we consider the group

Ĝ3 = G̃3/(K ∩K ′)K−3 ,

which is generated by the image D̂ = {D1, D2} of the amalgam D in Ĝ3.

Then D̂ is the amalgam of maximal parabolics in L3(2) associated with
its action on the projective plane of order 2. We formulate the uniqueness
criterion in the follow proposition.

Proposition 8.5.2 Let B = {G1, G2} be a rank 2 amalgam and K−3 be a
subgroup in G12 = G1 ∩ G2. For i = 1 and 2 put Gi3 = NGi

(K−3 ). Let
Di be the image in OutK−3 of Gi3 and D = 〈D1, D2〉. Suppose that the
following conditions (i)− (iv) hold.

(i) CGi3
(K−3 ) ≤ K−3 for i = 1 and 2;

(ii) D ∼= L3(2) and D̂ = {D1, D2} is the amalgam of maximal parabolics
associated with the action of D on the projective plane of order 2;

(iii) the centre Z of K−3 is a 2-group;

(iv) each chief factor of Ĝ3 inside Z is either the trivial 1-dimensional or
the 3-dimensional natural module for D (or its dual).

Then there exists at most one homomorphism ψ of the universal completion
G̃3 of {G13, G23} such that the restriction of ψ to K−3 is an bijection and

ψ(G̃3)/ψ(K−3 ) ∼= L3(2).

Proof. By (8.4.3) it is sufficient to show that the amalgam D̂ does not

possess a completion Ĝ3 such that Ĝ3/O2(Ĝ3) ∼= D ∼= L3(2) and O2(Ĝ3) is

isomorphic to a D-invariant subgroup Y in Z. Since D̂ maps isomorphically
onto its image in Ĝ3/O2(Ĝ3), such a group Ĝ3 must split over O2(Ĝ3) by
(8.2.8) and hence it is isomorphic to a semidirect product of Y and D ∼=
L3(2). Thus it is sufficient to show that in such a semidirect product Y : D

every subamalgam which is isomorphic to D̂ generates a complement to Y
(isomorphic to L3(2)). Furthermore, we may assume that Y is elementary
abelian and irreducible as a module for D. Indeed, otherwise we take Y1

to be the a largest D-invariant subgroup in Y and consider the semidirect
product (Y/Y1) : D which again must be a completion of D̂. By (iv) up
to isomorphism there are just two groups to be considered: 2× L3(2) and
23 : L3(2). These cases are dealt with in the next lemma (8.5.3). 2
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Lemma 8.5.3 Let D ∼= L3(2) and D̂ = {D1, D2} be the amalgam of max-
imal parabolics associated with the action of D on the projective plane of
order 2, so that D1

∼= D2
∼= Sym4 and D1 ∩ D2 is the dihedral group of

order 8. Let X = Y : D ∼= 23 : L3(2) be the semidirect product of D with
its natural module Y . Then

(i) the universal completion of D̂ does not possess non-trivial abelian
factor-groups;

(ii) 2× L3(2) is not a completion of D̂;

(iii) every subamalgam in X isomorphic to D̂ generates a complement to
Y in X;

(iv) X is not a completion of D̂.

Proof. It is easy to see that all the involutions in D̂ are conjugate,
which immediately implies (i) and then of course (ii) follows.

Since H1(D,Y ) is 1-dimensional by 8.2.5, X contains two classes of
complements to Y . Every complement is generated by a subamalgam iso-
morphic to D̂ and the subamalgams generating complements from different
classes can not be conjugate. Hence in order to prove (iii) it is sufficient to
show that X (when acts by conjugation) has on the set of the subamalgams

in X isomorphic to D̂ at most two orbits.
Let {D1, D2} be a subamalgam in X isomorphic to D̂. We assume

without loss of generality that D1 centralizes a 1-subspace in Y while D2

normalizes a 2-subspace. Let {D̃1, D̃2} be another subamalgam in X iso-

morphic to D̂. Since we classify the subamalgams up to conjugation, we
assume that {D1, D2} and {D̃1, D̃2} have the same image in the factor-

group X/Y and also that D2 and D̃2 share a subgroup T of order 3. Since
NX(T ) ∼= D12, T is contained in exactly two subgroups isomorphic to Sym3.
Hence in order to prove that there are at most two X-orbits on the set of
subamalgams isomorphic to D̂ it is sufficient to show that the subamalgams
under consideration are conjugate whenever D2 and D̃2 share a subgroup
Sym3. Put A = O2(D2) and Ã = O2(D̃2). Then Ã is contained in the sub-
group C = [Y A, T ] which is an elementary abelian 2-group and if A and

Ã are distinct, they are the only subgroups in C not contained in Y and
invariant under B := D1 ∩D2. Hence there is an element in CY (B) which

conjugates A onto Ã and hence it conjugates D2 = AB onto D̃2 = ÃB.
This shows that D2 and D̃2 are conjugate and so we assume that D2 = D̃2.

Since D2 maps isomorphically onto its image in X/Y , we have D1∩D2 =

D̃1∩ D̃2. Furthermore the intersection is a Sylow 2-subgroup in each of the
four subgroups involved. This means O2(D1) = O2(D̃1). Since we also

have NX(O2(D1)) ∼= Sym4 × 2, we must have D1 = D̃1. Finally (iv)
follows directly from (iii). 2

For the sake of completeness let us mention that the group X ∼= 28 :
L3(2), where O2(X) is the irreducible 8-dimensional Steinberg module for
L3(2) contains only one class of subgroups isomorphic to L3(2) and a few
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classes of subamalgams isomorphic to D̂. Let {D1, D2} be such a suba-
malgam and z be the unique non-zero element in O2(X) centralized by
D1 ∩D2. Then it can be shown that the amalgam {Dz

1 , D2} is not conju-
gate to {D1, D2}. Thus if 〈D1, D2〉 = L3(2), then 〈Dz

1 , D2〉 = X.

Incidentally (8.5.3) resembles Lemma 13.4.7 in [FLM88].

8.6 Two parabolics are sufficient

In this section we prove the following.

Proposition 8.6.1 Let G be a P - or T -geometry of rank n ≥ 3, G be a
flag-transitive automorphism group of G and let

A(G,G) = {Gi | 1 ≤ i ≤ n}.

Let (H, H) be a pair from Table I or II and let

A(H,H) = {Hi | 1 ≤ i ≤ n}.

Suppose that B = {G1, G2} is isomorphic to {H1, H2}. Then

A(G,G) ∼= A(H,H),

in particular G is a quotient of the universal cover of H.

Proof. We first claim that the subamalgam D = {G13, G23} is uniquely
specified in B up to conjugation by elements of G12. Notice that D can be
defined as the image of {H13, H23} under an isomorphism of A(H,H) onto
A(G,G). To establish the uniqueness, we observe that the subgroups G13

and G123 in G1 are specified uniquely by the assumptions (a) and (b).
Furthermore G23 = 〈G123, Y 〉, where Y is a Sylow 3-subgroup of K+

2 , so
the claim follows. Notice that K−3 is now also uniquely determined as the
largest subgroup in G123 normal in both G13 and G23. Now the conditions
in (8.5.2) hold because of the isomorphism

B ∼= {H1, H2}

and by Proposition 9 in Preface. Hence the isomorphism type of C =
{G1, G2, G3} is uniquely determined by (8.5.2) and coincides with that of
{H1, H2, H3}.

If n = 3 then we are done, so suppose that n ≥ 4. Since resG(x4) is the
projective GF (2)-space of rank 3 which is simply connected, by (1.4.6) G4 is
the universal completion of {G14, G24, G34}. Thus there is a unique way to
adjoin G4 to C. We carry on in a similar manner to adjoin all the remaining
maximal parabolics. This effectively shows that the universal completions
of A(G,G), C, {H1, H2, H3} and A(H,H) are pairwise isomorphic. 2



Chapter 9

Action on the derived
graph

In this chapter we put the first crucial constrain on the structure of the
maximal parabolics associated with a flag-transitive action on a Petersen
or tilde geometry. The result comes through studying the action of the flag-
transitive automorphism group on the derived graph of the corresponding
geometry. The derived graph of a P - or T -geometry of rank n is on the set
of elements of type n and two vertices are adjacent if they are incident to
a common element of type n− 1.

9.1 A graph theoretical setup

Let G be a P - or T -geometry of rank n ≥ 2, so that the diagram of G is

1

1
◦ 2

2
◦ · · · n−2

2
◦ n−1

2
◦ P n

1
◦

(if G is a Petersen type geometry) and

1

2
◦ 2

2
◦ · · · n−2

2
◦ n−1

2
◦ ∼ n

2
◦

(if G is a tilde type geometry).
On the diagrams above the nodes we indicate the type of the corre-

sponding elements. If x is an element of G then t(x) denotes the type of x,
where 1 ≤ t(x) ≤ n. In this section it probably would more be convenient
to work with the dual of G in which points, lines and planes are the elements
of type n, n− 1 and n− 2. But since this might cause confusion with other
parts of the book we decided to reserve the names points, lines and planes
for elements of type 1, 2 and 3 and to introduce new names for elements of
type n, n − 1 and n − 2. These elements will be called vertices, links and
quints, respectively (the choice of the names will be justified below).

Let ∆ = ∆(G) be the derived graph of G which is the collinearity graph
of the dual of G and in our terms it can be defined in the following way.
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The vertices of ∆ are the elements of type n in G (therefore we call such
elements vertices) and two vertices are adjacent if they are joint by a link
(incident to a common element of type n − 1). As we will see shortly, in
the case of Petersen type geometries links are the edges of ∆, while in the
case of tilde type geometries they are 3-cliques. Since a link is incident to
exactly two and three vertices for P - and T -geometries, respectively, it is
clear that every link produces an edge or a 3-clique. In (9.1.1) below we
will show that this mapping is bijective.

Every element x of G produces a subgraph Σ[x] of ∆. If x is a vertex
then Σ[x] is the one-vertex subgraph x. For every other type Σ[x] can be
defined as the subgraph consisting of all the vertices incident to x in which
edges are only those defined by the links incident to x. For example, if x
is a link then Σ[x] is an edge or a 3-clique depending of the type of the
geometry. For higher types Σ[x] may not be an induced subgraph of ∆,
although in the known examples it is usually such. Recall that res+

G (x) is
the subgeometry of all those y ∈ resG(x) with t(y) > t(x). If t(x) ≤ n − 2
then res+

G (x) is a P - or T -geometry of rank n− t(x) and Σ[x] is simply the
derived graph of that geometry. In particular, it is always connected.

To finish with the basic terminology, the elements of type n − 2 will
be called quints. For a quint x, Σ[x] is isomorphic to the Petersen graph
or the tilde graph (which is the collinearity graph of the geometry G(3 ·
S4(2))) depending on the type of the geometry. These subgraphs contain
5-cycles which are crucial for the subsequent arguments. This explains the
terminology. Finally, let us note that if x is a vertex, link, or quint then we
will apply the same name to the corresponding subgraph Σ[x].

Now we are well prepared for our first lemma.

Lemma 9.1.1 Two vertices are incident with at most one link.

Proof. Suppose u and v are vertices, u 6= v, and suppose x and y
are links incident to both u and v. Since resG(u) is a projective space, it
contains a quint q incident to both x and y. Furthermore, q is incident to v,
since G has a string diagram. It follows that u, v, x and y are all contained
in res+

G (q), which is the geometry G(Alt5) of the Petersen graph or the tilde
graph. Hence x = y. 2

Corollary 9.1.2 The graph ∆ has valency 2n − 1 if G is a Petersen type
geometry, and 2(2n − 1) if it is a tilde type geometry. In particular if
t(x) = i, then

(i) the subgraph Σ[x] has valency 2n−i − 1, if G is of Petersen type;

(ii) the subgraph Σ[x] has valency 2(2n−i − 1), if G is tilde type. 2

We will now show that the geometry G can be recovered from the graph
∆ and the set of all subgraphs Σ[x], x ∈ G.

Lemma 9.1.3 Σ[x] ⊆ Σ[y] if and only if x is incident to y and t(x) ≥ t(y).
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Proof. If t(x) < t(y) then Σ[x] cannot be a subgraph of Σ[y] by (9.1.2).
So without loss of generality we may assume that t(x) ≥ t(y). If x is a vertex
then the claim follows by definition. If x is a link then the ‘if’ part follows
by definition, while the ‘only if’ part follows from (9.1.1). Suppose that x
is of type at most n− 2. If x and y are incident then

res+
G (x) ⊆ res+

G (y)

and hence Σ[x] is a subgraph of Σ[y]. Suppose now that Σ[x] is contained
in Σ[y]. Let v be a vertex of Σ[x]. Then both x and y are in resG(v).
Furthermore, since Σ[x] is a subgraph of Σ[y], (9.1.1) implies that every
link incident with x is also incident with y. Restricting this to those links
that contain v, we obtain that x, as a subspace of the projective space
resG(v), is fully contained in the subspace y. Hence x and y are incident.2

Let S be the set of all subgraphs Σ[x], x ∈ G. Let v be a vertex.
Then resG(v) is a projective GF (2)-space of rank (n − 1). We can realize
this residue by the set of all proper subspaces in an n-dimensional GF (2)-
vector space U = U(v) so that the type of an element is its dimension
and the incidence is via inclusion. Let S(v) be the set of subgraphs in S
containing v. Then by (9.1.3) the mapping

σ : x 7→ Σ[x]

is a bijection which reverses the inclusion relation.

The following two lemmas record some of the properties of S.

Lemma 9.1.4 Suppose v is a vertex of both Σ[x] and Σ[y]. Let z ∈ resG(v)
correspond to the span of the subspaces x and y in U(v) (we put z = v if x
and y span the whole U(v)). In other terms z has the smallest type among
the elements incident to both x and y. Then the connected component of
Σ[x] ∩ Σ[y] that contains v coincides with Σ[z].

Proof. Since resG(v) is a projective space, z (defined as in the statement
of the lemma) is the unique element in resG(v), incident to both x and y,
and with t(z) minimal subject to t(z) ≥ min(t(x), t(y)). If z = v then v is
the entire connected component. So suppose z 6= v. Let u be a vertex that is
adjacent to v in Σ[x] ∩Σ[y]. Then the link a through v and u (it is unique
in view of (9.1.1)) is incident with both x and y. Furthermore, z is the
unique element incident to a, x, and y of type minimal subject to t(z) ≥
min(t(x), t(y)). Symmetrically, we can now conclude that, in resG(u), z
corresponds to the span of the subspaces x and y in resG(u). Thus, the
neighbourhood of u in Σ[x] ∩ Σ[y] coincides with the neighbourhood of
u in Σ[z]. Now the connectivity argument shows that Σ[z] is the entire
connected component of Σ[x] ∩ Σ[y]. 2

Lemma 9.1.5 Every path in ∆ of length k, k ≤ n−1, is contained in Σ[x]
for some x of type n− k or more.
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Proof. We will use induction on k. Clearly, the statement is true if
k = 0. For the induction step, suppose the statement of the lemma holds
for all i < k, where k > 0. Let (v0, v1, . . . , vk) be a k-path. By the induction
hypothesis, the k − 1-path (v0, v1, . . . , vk−1) is contained in Σ[y] for some
y of type at least n− k + 1. In resG(vk−1), y corresponds to a subspace of
dimension at least n−k+1 and the link a through vk−1 and vk corresponds
to a hyperplane in U(vk−1). Thus, both y and a are incident to an element
x ∈ resG(vk−1) of type at least n− k (the intersection of y and a). Clearly,
Σ[x] contains the entire path (v0, v1, . . . , vk−1, vk). 2

Remark: It follows from (9.1.4) that there exists a unique ele-
ment x of maximal type, such that Σ[x] is of minimal valency and con-
tains (v0, v1, . . . , vk−1, vk). Namely, Σ[x] will be the connected com-
ponent containing v0 of the intersection of all those Σ[y] that contain
(v0, v1, . . . , vk−1, vk).

9.2 Normal series of the vertex stabiliser

Now we start considering a flag-transitive action of a group G on G. Clearly,
G acts on the derived graph ∆. First we introduce some important notation
associated with this action.

Let us fix a vertex v (i.e., a vertex of ∆) and let H be the stabilizer of
v in G. Let Q be the kernel of H acting on resG(v) (recall that the latter is
the GF (2)-projective space of rank n−1). Define a further series of normal
subgroups in H as follows. Let Hi = Gi(v), i ≥ 1, be the joint stabilizer in
H of all the vertices at distance at most i from v. (This set of vertices will
be denoted by ∆≤i(v).) It is clear that in the considered situation we have

Hi ≤ Q, Hi �H and Hi+1 ≤ Hi.

Let us explain the relationship between the introduced notation and the
notation used throughout the book and introduced in Section 1.1. If Φ =
{x1, ..., xn−1, v = xn} is a maximal flag in G andGj = G(xj) is the stabilizer
of xi in G for 1 ≤ j ≤ n, then H = Gn, Q = Kn and H1 = Ln.

By (9.1.3) we know that different elements, say x and y in G are realized
by different subgraphs Σ[x] and Σ[y]. Hence an automorphism of G which
fixes every vertex of ∆ acts trivially on the whole G and hence must be the
identity automorphism.

Lemma 9.2.1 Suppose that a subgroup N is contained in Gjn = Gj ∩Gn
and normal in both Gj and Gn = H for some 1 ≤ j ≤ n− 1. Then N = 1.

Proof. Since G is a geometry and G acts on G flag-transitively, Gj and
Gn generate the whole G (compare Lemma 1.4.2 in [Iv99]). Hence N is
normal in G and since N ≤ Gn, N fixes the vertex xn of ∆. Hence N fixes
every vertex of ∆ and must be the trivial by the remark before the lemma.
2

When considering more than one vertex at a time we will be using the
notation G(v) for H, Gi(v) for Hi, and G 1

2
(v) for Q.
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We will first recall the properties of Hi when G is of rank two, that is,
G is the Petersen graph geometry or the tilde geometry. Recall that if G
is the Petersen graph geometry then G ∼= Sym5 or Alt5, while if G is the
tilde geometry then G ∼= 3 · Sym6 or 3 · Alt6. The properties summarized
in the following lemma can be checked directly.

Lemma 9.2.2 Suppose G is of rank two. Then

(i) H/Q ∼= Sym3
∼= L2(2);

(ii) Q/H1 is trivial if G is the Petersen graph geometry, and it is isomor-
phic to 22 if G is the tilde geometry;

(iii) H1 is trivial if G ∼= Alt5 or 3 ·Alt6; it has order two if G ∼= Sym5 or
3 · Sym6;

(iv) if H1 6= 1 and h ∈ H#
1 then h 6∈ G 1

2
(u) for all vertices u adjacent to

v;

(v) if u ∈ ∆2(v) and a is a link on u then Σ[a] contains a second (other
than u) vertex at distance at most two from v. 2

Notice that in the above lemma H2 = 1 in all cases.

Our approach to the classification of geometries G and their flag-
transitive automorphism groups G will be via the study of the factors of
the normal series

H �Q�H1 � . . .�Hi � . . .

We will have to bound the length of this series and identify its fac-
tors. Clearly, the top factor H/Q is the group induced by H on the
(n − 1)-dimensional projective space resG(v) defined over GF (2). By flag-
transitivity of H/Q on this residue by (3.1.1) we have the following

Lemma 9.2.3 The group H/Q is a flag-transitive automorphism group of
the projective space resG(v). In particular, either H/Q ∼= Ln(2), or Frob37
(for n = 3), or Alt7 (for n = 4). 2

The remaining factors of our series will be shown to be elementary
abelian 2-groups, and so we will view them as GF (2)-modules for H. In
what follows the natural module for H is provided by the action of H on the
n-dimensional vector space U = U(v) underlying the (n − 1)-dimensional
projective space resG(v). That means that the points in resG(v) correspond
to the 1-subspaces of U while the links in resG(v) correspond to the hyper-
planes in the natural module of H. Clearly, Q is the kernel of the action of
H on its natural module U . Thus, we can also view U as an H/Q-module.

Let us now discuss the group Q/H1.

Lemma 9.2.4 Either Q = H1, or G is of tilde type, Q/H1
∼= 2n, and, as

a module for H/Q, the quotient Q/H1 is isomorphic to the natural module
U .
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Proof. If G is of Petersen type then by (9.1.1) the vertices adjacent to
v bijectively correspond to the links on v. Hence Q = H1 in this case. Now
suppose that G is of tilde type and Q is strictly larger than H1. Let g ∈ Q
and let a be a link on v. Since g is in Q, it must stabilize a, and hence it
acts on the two points of a other than v. So g2 fixes both of those points.
Since a was arbitrary, g2 ∈ H1, which means that Q/H1 is an elementary
abelian 2-group. Consider V = Q/H1 and its dual (as a GF (2)-vector
space) V ∗. By the transitivity of H on the links on v, Q cannot fix every
vertex on a (otherwise, Q = H1.) Hence the kernel of the action of Q on
the points of a is a subgroup of index two in Q, and hence it corresponds
to a non-zero vector v∗a in V ∗. Suppose a, b and c are three links on v, all
of them incident to the same quint z. Suppose g ∈ Q acts trivially on the
points of a and b. It follows from (9.2.2 (ii)) that g fixes all points on c
as well. This means that the vectors v∗a, v∗b and v∗c together with the zero
vector form a 2-space in V ∗, that is, we have a relation v∗a + v∗b + v∗c = 0.
It now follows from (3.1.2) that V ∗ is a quotient of the dual of the natural
module U . Finally, since H/Q is transitive on the non-zero vectors of U ,
we have that U is irreducible, and hence V ∼= U . 2

At the moment, all we can say about the remaining factors, Hi/Hi+1,
i ≥ 1, is that they are elementary abelian 2-groups.

Lemma 9.2.5 The factors Hi/Hi+1 are elementary abelian 2-groups for
all i ≥ 1.

Proof. Suppose g ∈ Hi and u ∈ ∆i+1(v) (so that u is at distance i+ 1
from v in ∆). Let w be a vertex at distance i− 1 from v and at distance 2
from u. By (9.1.5), w and u are contained in Σ[z] for a quint z. Since g fixes
w and all its neighbours in ∆, we have that g stabilizes Σ[z] as a set and
hence it acts on it. By (9.2.2 (iii)), g2 fixes Σ[z] vertex-wise; in particular,
g2 fixes u. Since u was arbitrary, g2 ∈ Hi+1, and the claim follows. 2

In the remainder of this section we will discuss the exceptional cases of
H/Q and Q/H1.

Lemma 9.2.6 The following assertions hold:

(i) H/Q 6∼= Frob37;

(ii) if H/Q ∼= Alt7 then H1 = 1.

Proof. Suppose first that H/Q ∼= Frob37. Then n = 3. Consider a
quint x incident to v. By (9.2.2 (i)), the stabilizer of x in H induces on
the three links incident to v and x the group Sym3, which contradicts the
fact that H/Q ∼= Frob37 (the latter group does not involve Sym3). So (i)
follows.

Now suppose n = 4 and H/Q ∼= Alt7. Let u be a vertex adjacent
to v and let a be the link on v and u. Then the stabilizer of v and a
induces on resG(v) the group L3(2). Since G(v, u) is of index at most
two in the stabilizer of v and a, G(v, u) also induces on resG(v) the group
L3(2). Symmetrically, G(v, u) induces L3(2) on resG(u). Consider now the
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action of H1 on resG(u). Since H2 acts on resG(u) trivially, H1 induces on
resG(u) a 2-group by (9.2.5). On the other hand, H1 is normal in H, and
hence in G(v, u). Since L3(2) contains no nontrivial normal 2-group, this
implies that H1 ≤ G 1

2
(u). We claim that in fact H1 ≤ G1(u). Indeed, let

w ∈ ∆1(u). By (9.1.5) there is a quint z such that Σ[z] contains the path
(v, u, w). By (9.2.2 (iv)), an element fixing all neighbours of v and all links
on u must act trivially on Σ[z]. Hence it fixes every vertex w ∈ ∆1(u).

We proved that H1 ≤ G1(u) for all u ∈ ∆1(v). Hence H1 = H2, and by
the vertex-transitivity of G on ∆, this implies that H1 = 1. 2

Thus we have the following.

Corollary 9.2.7 If H/Q 6∼= Ln(2) then n = 4 and H ∼= Alt7, or 24.Alt7.2

Let us conclude this section with a comment concerning the exceptional
configuration for Q/H1 (compare (9.2.4)). If G is a Petersen type geometry
then, of course, Q must equal H1. On the other hand, for tilde type ge-
ometries the generic case is where Q/H1

∼= 2n. Indeed, in view of (9.2.7),
we may assume that H/Q ∼= Ln(2). Suppose Q = H1. Let a be a link
incident to v. Considering the action on Σ[q] for a quint q incident to a
and using (9.2.2 (ii)), we obtain that the stabilizer of a in H contains an
element interchanging the two vertices in Σ[a] \ {v}. On the other hand,
the stabilizer of a in H/H1

∼= Ln(2) has structure 2n−1 : Ln−1(2). If n > 3
then the latter has no subgroup of index two. So the stabilizer of a in H
cannot act on Σ[a] \ {v}. This proves the following.

Lemma 9.2.8 If G is of tilde type and H/H1
∼= Ln(2) then n = 3. 2

We will return to this exceptional configuration in Section 10.2 (cf.
(10.2.2)).

9.3 Condition (∗i)
Throughout this section we assume H/Q ∼= Ln(2). We will investigate the
impact on the structure of H of the following conditions.

(∗i) If Σ = Σ[x] for x of type n− i (here 2 ≤ i ≤ n−1) and if v is a vertex
of Σ then the joint stabilizer R of all the vertices of Σ at distance (in
Σ) at most i− 1 from v induces on Σ an action of order at most two.

Notice that since R stabilizes v and all the links incident to both v and
x, it must stabilize x and hence it indeed acts on Σ. Notice also that due
to (9.2.2 (iii)) the property (∗2) holds for all G.

Define Vi = Hi/Hi+1, i ≥ 1. By (9.2.5) Vi is an elementary abelian
2-group. So we can view it as a vector space over GF (2) and as a module
for H.

Lemma 9.3.1 Suppose that (∗i) holds. Then either:

(i) Vi−1 = 1, or
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(ii) dimVi−1 = 1, or

(iii) Vi−1 is isomorphic to the i-th exterior power
∧i

U of the natural mod-
ule U of H.

Proof. Put Σ = Σ[x] for an arbitrary element x ∈ resG(v) of type n−i.
(so that x is an (n − i)-subspace in the natural module U of H). By (∗i)
the group Hi−1 induces on Σi(v) (the set of vertices at distance i from v in
Σ) an action of order at most two. If the action is trivial then the same is
true for all Σ′ = Σ[y] for y ∈ resG(v) of type n− i (because H is transitive
on all such y). By (9.1.5) every vertex in ∆i(v) is contained in some Σ′ as
above and hence Hi−1 = Hi, which implies Vi−1 = 1 and (i) holds.

So we can assume that Hi−1 induces on each Σi(v) a group of order
exactly two. Let V = Vi−1 and V ∗ be the dual of V . Clearly, Hi acts
trivially on Σ and hence the kernel of the action of Hi−1 on Σ corresponds
to a nonzero vector v∗x ∈ V ∗. Since every vertex from ∆i(v) is contained in
some Σ = Σ[x], we have that the vectors v∗x generate V ∗. (In particular, this
implies that Q centralizes V , as it fixes every x.) Consider now elements
x, y, z ∈ resG(v) of type n−i such that they are incident to common elements
t and r of type n− i+ 1 and n− i− 1 respectively. This means that

x ∩ y ∩ z = r, 〈x, y, z〉 = t,

(If i = n− 1 then we skip r.) Suppose g ∈ Hi−1 acts trivially on Σ[x] and
Σ[y]. We claim that g must also act trivially on Σ[z]. Suppose not, then
g acts non-trivially on the neighbours in Σ[z] of some vertex u ∈ Σ[z] at
distance i − 1 from v. Let h ∈ H take u to u′ = uh ∈ Σ[t]. Then g′ = gh

acts non-trivially on the neighbours of u′ in Σ[z]. By (∗i) the action of
Hi−1 on Σ[z] is of order two. Hence g and g′ induce the same action on
Σ[z]. In particular, g acts non-trivially on the neighbourhood of u′, and so
we can assume that u = u′ is contained in Σ[t].

Now in the projective geometry resG(u) the elements x and y are two
different subspaces containing r with codimension 1 (two projective points
if i = n− 1). Since g acts trivially on both Σ[x] and Σ[y] it fixes every link
containing u and contained in either of this subgraphs. Hence it fixes every
link contained in Σ[r] (every link containing u if i = n−1). In particular, it
fixes every link contained in Σ[z], since z is yet another subspace containing
r with codimension 1 and contained in t. This contradicts the fact that g
acts non-trivially on the neighbours of u in Σ[z].

We have shown that if g acts trivially on Σ[x] and Σ[y] then it also acts
trivially on Σ[z]. This means that v∗z is contained in the subspace generated
by v∗x and v∗y . There are two cases. If this subspace is 1-dimensional then
v∗x = v∗y = v∗z . Since H acts flag-transitively on resG(v) it acts transitively
on the set of all triples {x, y, z} which are incident to common elements of
type n− i− 1 and n− i+ 1. This immediately implies that all vectors v∗x
are equal, and hence V ∗ is 1-dimensional and (ii) holds.

If the subspace spanned by v∗x and v∗y is 2-dimensional then the three
vectors v∗x, v∗y and v∗z are pairwise distinct, and this implies a relation
v∗x + v∗y + v∗z = 0. Again by flag-transitivity such a relation holds for every
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triple {x, y, z} as above. It follows from (3.1.3) that V ∗ is a quotient of the
(n − i)-th exterior power of the natural module U . Since H/Q ∼= Ln(2) is
irreducible on the exterior powers, we finally conclude that V ∗ is in fact
isomorphic to the

∧n−i
U . Since the dual of

∧n−i
U is

∧i
U (iii) holds. 2

If Vi−1 = 1, then Hi−1 = Hi. In view of the vertex-transitivity of G
on ∆ this implies that Hi−1 = 1. Let us see that the length of the normal
series can also be bounded in the case when dimVi−1 = 1.

Lemma 9.3.2 If |Vi−1| = 2 then Hi = 1.

Proof. Suppose g ∈ Hi and let u ∈ ∆1(v). Then g acts trivially
on ∆i−1(u). By our assumption the action of the point-wise stabilizer of
∆i−1(u) on ∆i(u) is of order two. Hence the action of g is either trivial on
each ∆i−1(w), w ∈ ∆1(u), or it is non-trivial for all w. As the action is
clearly trivial for w = v we conclude that g acts trivially on ∆i(u). Since u
was arbitrary in ∆1(v), it follows that g ∈ Hi+1, that is, Hi = Hi+1. Now
the claim follows. 2

Here is one more lemma bounding the length of the normal series.

Lemma 9.3.3 If (∗n−1) holds then Hn = 1.

Proof. Let g ∈ Hn and suppose u ∈ ∆n+1(v). Let w be a vertex in
∆2(v) ∩∆n−1(u). By (9.1.5) v and w are contained in some Θ = Σ[t] for
a quint t, and similarly w and u are contained in some subgraph Σ = Σ[r]
for r being a point (an element of type 1). It follows from (9.1.4) that
Θ and Σ meet in Σ[a] for a link a containing w. Now (9.2.2 (v)) implies
that Σ[a] contains a second vertex w′ at distance at most two from v. Now
observe that g fixes elementwise the set Σ≤n−2(w). Because of the property
(∗n−1), either g acts trivially on Σ, or it acts non-trivially on Σn−2(t) for
every t ∈ Σ1(w). Since the latter condition fails for t = w′ we conclude
that g acts trivially on Σ. In particular, g fixes u. Since u was an arbitrary
vertex in ∆n+1(v), g is contained in Hn+1. Thus, Hn = Hn+1, and hence
Hn = 1. 2

Lemma 9.3.4 Suppose that (∗n−1) holds. Then, as an H-module, Hn−1

is isomorphic to a submodule of the GF (2)-permutational module on the
vertices from ∆1(v).

Proof. By the preceding lemma we have that Hn = 1, so Hn−1 acts
faithfully on ∆n(v). Let u ∈ ∆1(v). We claim that Hn−1 induces on
∆n−1(u) an action of order two. It will be more convenient for us to prove
the symmetric statement, namely, that K = Gn−1(u) induces on ∆n−1(v)

an action of order two. Observe first that Vn−2
∼=
∧n−1

U . Indeed, accord-
ing to (9.3.1), the only other possibilities are the trivial or 1-dimensional
Vn−2, which would imply that Hn−1 = 1 (cf. (9.3.2)). Notice that the∧n−1

U ∼= U∗. Thus, Vn−2 is the dual U∗ of natural module U . The
action induced by K on ∆n−1 is a subspace of Vn−2 invariant under the
subgroup H ∩ G(u). Modulo Q, the latter subgroup maps onto the full
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parabolic subgroup of H/Q ∼= Ln(2). Hence the action of K on ∆n−1(v)
is either the entire Vn−2, or it is 1-dimensional, or trivial. In the first case,
K = Hn−1, which implies Hn−1 = 1. Similarly, in the last case K = Hn,
which again implies Hn−1 = 1. So as claimed, the action of K on ∆i−1(v)
is 1-dimensional, and symmetrically, the action of Hn−1 on ∆n−1(u) is also
1-dimensional.

Set V = Hn−1. By the previous paragraph, the kernel of the action of
V on ∆n−1(u) is a hyperplane of V , which corresponds to a 1-dimensional
subspace 〈v∗u〉 of V ∗. Now observe that ∆n(v) is contained in the union
of the sets ∆n−1(u) taken for u ∈ ∆1(v). This shows that the vectors v∗u,
u ∈ ∆1(v), span V ∗. Hence V ∗ is a factor module of the permutational
module on ∆1(v). Equivalently, V is a submodule of the same permuta-
tional module. 2

In quite a few cases we will face the situation when Hn−1 is a trivial
module for H. This situation is refined by the following lemma

Lemma 9.3.5 In the hypothesis of (9.3.4) suppose that Hn−1 is in the
centre of H. Then |Hn−1| ≤ 2.

Proof. The result follows from the well known fact that the cen-
tre of the permutational module of a transitive permutation group is 1-
dimensional. 2

9.4 Normal series of the point stabiliser

The variety of the possible structures of the vertex stabilizer H = Gn =
G(xn) left by the results of the previous section can be further reduced if
we play those results against the properties of other parabolics.

Let 1 ≤ i ≤ n− 2 if G is of P -type and 1 ≤ i ≤ n− 1 if G is of T -type.
Let Gi = G(xi) be the stabiliser in G of the element xi in the maximal flag
Φ = {x1, ..., xn}.

Recall that res−G (xi) is the subgeometry in G formed by the elements
incident to xi whose type is less than i. This residue is isomorphic to
the projective GF (2)-space of rank i − 1 (of course it is empty if i = 1).
Let U−i denote the universal representation module of the dual of resG(xi).
Thus U−i is generated by pairwise commuting involutions indexed by the
elements of type i−1 incident to xi and the product of three such involutions
corresponding to a, b and c is the identity whenever a, b and c are incident
to a common element of type i− 2 (this element is also incident to xi).

Similarly res+
G (xi) is the subgeometry formed by the elements in G in-

cident to xi+1 whose type is greater than i. Since i ≤ n − 2, the residue
res+
G (xi) is a P - and T -geometry (depending on the type of G) of rank n− i.

Let U+
i be the universal representation module of res+

G (xi) (whose points
and lines are the elements of type i+ 1 and i+ 2 incident to xi).

Let Ki be the kernel of the action of Gi on resG(xi), so that Gi = Gi/Ki

is a flag-transitive automorphism group of resG(xi). Let G(xi) be the set
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of elements yi of type i in G such that there exists a premaximal flag Ψ of
cotype i (depending on yi) such that both

Ψ ∪ {xi} and Ψ ∪ {yi}

are maximal flags. Since G belongs to a string diagram yi ∈ G(xi) if and
only if there is an element of type i− 1 incident to both xi and yi and an
element of type i + 1 incident to both xi and yi. Let Li be the kernel of
the action of Ki on the set G(xi).

Proposition 9.4.1 In the above terms the quotient Ei := Ki/Li is an
elementary abelian 2-group and as a module for Gi the dual E∗i of Ei is
isomorphic to a quotient of the tensor product U−i ⊗ U

+
i .

Proof. Without loss of generality we can assume that Ei 6= 1. If Ψ is
a premaximal flag of cotype i in G incident to xi (i.e., such that Ψ ∪ {xi}
is a maximal flag) then resG(Ψ) consists of three elements of type i, one of
which is xi. Let g ∈ Ki. Since Ki acts trivially on resG(xi), g stabilizes
every triple resG(Φ) as above, fixing xi as well. It follows that g2 acts
trivially G(xi) and hence g2 ∈ Li. This proves that Ei is an elementary
abelian 2-group.

With Ψ as above consider the action of Ki on resG(Ψ) (of size 3). If
this action is trivial for some Ψ then, because of the flag-transitivity of Gi
on resG(xi), the action is trivial for every such Ψ. Hence Ki = Li and
Ei = 1, contradicting our assumption. Thus, the kernel of the action of Ki

on resG(Ψ) is a subgroup of index 2, and it corresponds to a hyperplane in
Ei, or, equivalently, a 1-subspace 〈eΦ〉 in the dual E∗i .

Suppose j is a type in the diagram of G, adjacent to i. That is, j = i−1
or j = i+ 1. Pick a flag Ξ in resG(xi) of cotype j. (In the entire G the flag
Ψ has cotype {i, j}.) Then resG({xi} ∪ Ξ) = {a, b, c} for some elements a,
b and c of type j. We claim that the following relation holds in E∗:

e{a}∪Ξ + e{b}∪Ξ + e{c}∪Ξ = 0.

Indeed, a group theoretic equivalent of this relation is that Ki induces on

Ω := resG({a} ∪ Ξ) ∪ resG({b} ∪ Ξ) ∪ resG({c} ∪ Ξ)

an action of order four. (Notice that if e{a}∪Ξ = e{b}∪Ξ then also e{a}∪Ξ =
e{c}∪Ξ since the stabilizer in Gi of Ξ is transitive on {a, b, c}. Then the
action on Ω is of order two.) Now observe that Ω is fully contained in
resG(Ξ). If G is of tilde type, i = n − 1 and j = n then the fact that the
action of Ki on Ω is of order four is recorded in (9.2.2 (ii)). In all other
cases, resG(Ξ) is a projective plane of order two, and the desired property
can be checked directly.

It remains to see that the relations we have just established indeed
mean that E∗i is a quotient of U−i ⊗ U+

i . First let i = 1. Notice that
res+
G (x1) = resG(x1) and res−G (x1) = ∅. According to our definitions, the

second factor in the tensor product is trivial (1-dimensional). So we need
to show that E∗ is a quotient of U+

i = V (resG(x1)). Observe that if Ψ and
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Ψ′ are two maximal flags from resG(x1) then eΨ = eΨ′ whenever Ψ and Ψ′

contain the same element of type 2. So instead of eΨ we can write ey, where
y is the element of type 2 from Ψ. It remains to notice that the elements of
type 2 are the points of resG(xi) and that the sets {a, b, c} = resG({xi}∪Ξ)
are the lines, where Ξ is a flag of resG(x1) of cotype 2. So the relations
we have established for E∗ are exactly the relations from the definition of
V (resG(xi)).

Let now i ≥ 2. Then eΨ = eΨ′ whenever Ψ and Ψ′ contain the same
elements y and z of types i − 1 and i + 1, respectively. So we can write
eyz in place of eΨ. With this notation the relations we established state
that (1) eya + eyb + eyc = 0 for every line {a, b, c} from res+

G (x), and (2)

eaz+ebz+ecz = 0 for every line {a, b, c} from res−G (x). According to (2.4.2)

these relations define U−i ⊗U
+
i . So E∗i is a quotient of the latter module.2

The case i = 1 is of a particular importance for us and we summarize
this case in the following (notice that L1 is the kernel of the action of K1

on the set of points collinear to x− 1.)

Corollary 9.4.2 In the above terms the quotient K1/L1 is an elementary
abelian 2-group and its dual is a G1-admissible representation module of
resG(x1) i.e., a quotient of the universal representation module V (resG(x1))
over a subgroup normalized by G1. 2

In the remainder of the section we deal with the case i = 1 only. We
will again be working with the derived graph ∆ of G. Let Σ = Σ[x1] (notice
that the vertex xnis contained in Σ).

Lemma 9.4.3 The subgroup L1 acts trivially on resG(u) for every vertex
u of Σ.

Proof. Let u be a vertex of Σ (which is an element of type n in G)
and let y1 6= x1 be an element of resG(u) of type 1. Since resG(u) is a
projective space, x1 and y1 are collinear points and hence they are both
incident to an element z of type 2 (which is a line). Since G has a string
diagram, x1, y1 ∈ resG(Ψ) for every flag Ψ cotype 1 that contains z. Hence
L1 stabilizes y1. Since y1 was arbitrary, L1 stabilizes every point of the
projective space resG(u) and so L1 acts trivially on resG(u). 2

Let N1 be the joint stabilizer of all the vertices adjacent to Σ = Σ[x1]
in ∆. Let us introduce the following property of G and G:

(∗∗) L1 6= N1.

Lemma 9.4.4 If (∗∗) holds then G is of tilde type and

(i) L1/N1 has order 2;

(ii) every g ∈ L1 \N1 acts fixed-point freely on the set of vertices adjacent
to Σ;

(iii) Q 6= H1;
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(iv) the property (∗∗) holds for resG(x1) with respect to the action of G1

on it.

Proof. The fact that G must be of tilde type follows from (9.4.3) and
the definition of N1. Suppose that g ∈ L1 \N1. Suppose further that a is a
link incident with a vertex u of Σ = Σ[x1] but not incident with xn (notice
that g fixes a by (9.4.2)). We claim that g permutes the two vertices of a
other than u (since G is of tilde type every link consists of three vertices).
Indeed, suppose g fixes all three vertices of a. Let Θ = Σ[z] be a quint
containing Σ[a]. Let b be the link incident to both z and x. Then g acts
trivially on both Σ[a] and Σ[b] and (9.2.2 (ii)) implies that g fixes all the
neighbours of u in Θ. Furthermore, since g stabilizes all links incident to
any vertex of Σ[b], (9.2.2 (iv)) implies that g acts trivially on the entire Θ.
Since Θ was arbitrary, g acts trivially on the set of neighbours of u in ∆.
Also, observe that if u′ is a neighbour of u in Σ then some Θ contains u′

and a link a′ incident with u′ but not with x1. Since g must fix the three
vertices of Σ[a′] we can use the connectivity argument to deduce that g
fixes every neighbour of Σ. So g ∈ N1, a contradiction. Thus, g must act
non-trivially on every Σ[a] where a is a link incident to a point of Σ, but
not incident to x. This proves (i) and (ii).

To prove (iii) observe that by (9.4.3) an element g ∈ L1\N1 is contained
in Q, while (ii) implies that g 6∈ H1.

For (iv), consider an element y1 ∈ resG(xn) of type 1, y1 6= x1. Let
z be the element of type 2, that is incident with both x1 and y1, and let
g ∈ L1 \N1. Then in its action on Σ[y1] the element g fixes Σ[z] vertex-wise
and it stabilizes all the links incident to the vertices of Σ[z]. On the other
hand, by (ii), g acts non-trivially on the neighbours of Σ[z] in Σ[y]. So Σ[z]
satisfies (∗∗). 2

Lemma 9.4.5 If the property (∗i), holds for every 2 ≤ i ≤ k (where k ≤
n− 1) then N1 fixes all vertices at distance at most k from Σ[x1].

Proof. We will prove the assertion by induction on the distance. If u
is at distance one from Σ = Σ[x1] then N1 fixes u by the definition. Now
suppose it is known that all vertices at distance at most i − 1 from Σ are
fixed by N1, where 2 ≤ i ≤ k. Suppose u is at distance i from Σ. By (9.1.5)
there exists an element y of type n − i such that Σ[y] contains u and a
vertex w of Σ. By (9.1.4) both Σ and Σ[y] contain Σ[z] for some z for some
z of type n − i + 1. In particular this means that Σ and Σ[y] share some
link Σ[a] containing w. Let w′ ∈ Σ[a] with w′ 6= w. By (9.4.3) N1 stabilizes
y, and so it acts on Σ[y]. Since by the inductive assumption N1 stabilizes
all vertices at distance at most i − 1 from either w or w′, and since (∗i)
holds by the assumption of the lemma, we conclude from (9.4.3) that N1

must act trivially on Σ[y]. In particular, N1 fixes u. 2

Lemma 9.4.6 Suppose (∗i) holds for every 2 ≤ i ≤ n− 1. Then |N1| ≤ 2.

Proof. Suppose N1 6= 1 and let g ∈ N#
1 . By (9.4.5) g ∈ Hn−1. In

view of (9.3.3) the action of Hn−1 on ∆n(v) is faithful. Therefore, in order



168 CHAPTER 9. ACTION ON THE DERIVED GRAPH

to prove that |N1| = 2 it is sufficient to show that the action of g on ∆n(v)
is uniquely determined. Let w ∈ ∆n(v) and let u be a neighbour of v such
that the distance between u and w in ∆ is n − 1. By (9.1.5) the shortest
path between u and w is contained in Σ[y] for a point y (so that u and w
are at distance n− 1 in Σ[y]).

If Σ[y] meets Σ = Σ[x1] in a vertex then (∗n−1) and (9.4.5) show that g
fixes Σ[y] vertex-wise. So we only need to consider the case where y is not
incident to the link a that is incident to both v and u. We claim that for
such a y the action of g on Σ[y] is nontrivial. In view of (∗n−1) the action
of g on Σ[y] is then unique and the lemma follows.

Thus it suffices to show that g acts on Σ[y] non-trivially. Suppose ad
absurdum that g fixes every vertex of Σ[y]. We will show that in this case
g must act trivially on every Σ[z], where z ∈ resG(u) is a point not incident
to a. By (9.1.4) the intersection of Σ[y] and Σ[z] contains a link on u. Let
t be a vertex of this link, t 6= u. Let Θ = Σ[q] be a quint containing the
path (v, u, t) (compare (9.1.5)). It follows from (9.1.4) that Σ and Θ share
a link on v. Let v′ 6= v be a vertex of that link that is at distance at most
two from t (see (9.2.2 (v))) and let u′ be the common neighbour in Θ of v′

and t. Let a′ be the link incident to v′ and u′. If u′ is in Σ then g fixes all
vertices of Σ[z] at distance at most n− 2 from u or t. Then (∗n−1) implies
that the action of g on Σ[z] is trivial. So without loss of generality we may
assume that u′ 6∈ Σ. Finally, let y′ ∈ resG(u′) be a point incident to t, but
not to v′.

Observe that g stabilizes in Σ[y′] all the vertices at distance at most
n−2 from u′. Besides, it fixes all the vertices in the intersection of Σ[y] and
Σ[y′]. By (9.1.4) the component of the intersection containing t coincides
with Σ[r] for some r of type 2. Observe that Σ[r] cannot contain u′ because
it cannot contain the entire quint Σ[q]. Due to (∗n−2), we must now have
that g fixes Σ[y′] vertex-wise. (Indeed, if X is the group induced on Σ[y′]
by its stabilizer in G, then the stabilizer of u′ in X acts transitively on the
set of subgraphs Σ[r′] of Σ[y′] at distance one from u′. So by (∗n−1) if g
acts trivially on one of them then it must act trivially on all of them.)

Symmetrically, since g acts trivially on Σ[y′], we can now show that
it also acts trivially on Σ[z]. Since z was arbitrary, g fixes all vertices at
distance n from v, that is, g ∈ Hn = 1, a contradiction. 2

9.5 Pushing up

In this section we only consider the case where G is of Petersen type. We
apply some pushing up technique to reduce further the structure of Hn−1

under the condition (∗n−1). First we recall some basic notions and results.
Suppose that T is a p-group for a prime number p. Then the Thompson

subgroup J(T ) of T is generated by all elementary abelian subgroups A of
T of maximal rank. Observe that J(T ) 6= 1, if T 6= 1. The following is a
further important property of the Thompson subgroup.

Lemma 9.5.1 Let T be a p-group and Q ≤ T . If J(T ) ≤ Q then J(T ) =
J(Q). 2
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By Ω1(T ) we denote the subgroup in T generated by the elements of
order p in T . For a group G, a faithful GF (pf )-module V of G is said to
be an FF -module (failure-of-factorisation module) if for some elementary
abelian subgroup A 6= 1 of G we have

|A| ≥ |V/CV (A)|.

A subgroup A with this property is called an offending subgroup (or just
an offender).

Proposition 9.5.2 Suppose that G is a group, Q is a normal p-subgroup
of G, and T is a p-subgroup of G such that Q ≤ T . Let V = Ω1(Z(Q)) and
suppose CG(V ) = Q. Let G = G/Q. Then one of the following holds:

(i) J(T ) = J(Q); or

(ii) V is an FF -module for G over GF (p), and T contains an offending
subgroup.

Proof. Suppose A is an elementary abelian subgroup of T of maximal
rank. If every such A is contained in Q then J(T ) = J(Q) and (i) holds.
Thus, without loss of generality we may assume that A 6≤ Q. Observe that
CA(V ) = A ∩Q and so (A ∩Q)V is elementary abelian. Hence

|A| ≥ |(A ∩Q)V | = |A ∩Q| · |V |
|(A ∩Q) ∩ V |

.

Since (A ∩ Q) ∩ V = A ∩ V ≤ CV (A) = CV (A), we finally obtain that
|A| ≥ |V/CV (A)|, that is, A 6= 1 is an offending subgroup in T and so (ii)
holds. 2

We can now apply this proposition to reduce the structure of Hn−1.

Lemma 9.5.3 Suppose that G is of Petersen type and (∗n−1) holds. Then
Hn−1 = Vn−1 is a submodule of the direct sum of the 1-dimensional module
and the module dual to natural.

Proof. It follows from (9.3.3) and (9.3.4) that Hn−1 = Vn−1 is iso-
morphic, as an H-module, to a submodule of the permutational module
P1 on points of the projective space ∆1(v). (We will be using the notation
introduced in Section 3.2.) The structure of this module is described in
(3.2.7) and (3.3.5). In particular, unless the conclusion of the lemma holds,
the submodule corresponding to Hn−1 must contain X (n− 2). That is, as
an H-module, Hn−1 must have at least two nontrivial composition factors:
a composition factor W1, isomorphic to the dual of the natural module, U∗,
and another one, W2, isomorphic to the second exterior power of the dual
of the natural module,

∧2
U∗. In particular, Q = CH(Hn−1).

We will apply (9.5.3) for G = H = G(v). Let T = O2(G(v) ∩ G(u)),
where u ∈ ∆1(v). Let also V = Ω1(Z(Q)) and H = H/Q. Clearly, Hn−1 ≤
V . In particular, Q = CH(V ), because Q = CH(Hn−1). According to
(9.5.3), either J(T ) = J(Q), or V is an FF -module and T contains an
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offending subgroup. If J(T ) = J(Q) then J(T ) is normal in H, as well as
in the stabilizer of the edge {v, u}. By (9.2.1) this means that J(T ) acts
trivially on ∆; a contradiction. It remains to rule out the possibility that
T contains an offending subgroup.

Suppose A ≤ T is an offending subgroup. If x ∈ A#
then CW1

(x) has
index two in W1, while the index of CW2

(x) in W2 is 2n−2. Therefore,
|A| ≥ |V/CV (A)| ≥ 2n−1 = |T |. Hence, A = T . However, the index of
CW2(T ) in W2 exceeds 2n−2, which implies that the index of CV (T ) in V
exceeds 2n−1 = |T |. Thus, T cannot be an offending subgroup. 2



Chapter 10

Shapes of amalgams

As above we, fix a vertex v = xn and a point x1 incident to xn. The
parabolics H = Gn and G1 were defined as the stabilizers in G of v = xn
and x1, respectively. In Section 9.2 we introduced a normal series

Gn = H �Q�H1 � ...�Hi � ...

in which all the factors except for H/Q (which will be shown to be Ln(2)
in all the cases) are elementary abelian 2-groups and Hn = 1 provided the
condition (∗n−1) holds (cf. Lemma 9.3.3). In Section 9.4 we have shown
that G1 possesses a normal series

G1 �K1 � L1 �N1,

where the index of N1 in L1 is at most 2 by Lemma 9.4.4 (i) and if (∗i) holds
for every 2 ≤ i ≤ n−1, then N1 is itself of order at most 2 by Lemma 9.4.6.
Finally E = K1/L1 is an elementary abelian 2-group whose dual E∗ is
a G1-admissible representation module of the point-residue resG(x1) by
Lemma 9.4.2. In the present chapter we will compare the structures of
Gn and G1, which are related via G1n = G1 ∩ Gn. This will allow us to
compile a relatively short list of possible shapes (by which we currently just
mean the information about the normal factors) of Gn and G1 summarized
in Tables VIII a and VIII b. In the next chapter some of these shapes will
be shown to be impossible, and the others will lead to the actual examples.

10.1 The setting

Notice first that due to our inductive approach we assume that in the P - or
T -geometry G of rank n under consideration the point residue resG(x1) is a
known P - or T -geometry, of rank n−1. In Tables VII a and VII b we record
the structure of H = Gn for the known examples. The information in these
tables enables us to decide, in particular, in which cases the condition (∗i)
holds for the geometry G under consideration.

171
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Table VII a. Vertex stabilizers in the known P -geometries

rank G V1 V2 V3 V4

2 Alt5

2 Sym5 2

3 (3·)M22 23

3 (3·)AutM22 23 2

4 M23

4 (323·)Co2 26 24 2

4 J4 26 24 24

5 (34371·)BM 210 210 25 25

Table VII b. Vertex stabilizers in the known T -geometries

rank G Q/H1 V1 V2 V3 V4

2 3 ·Alt6 22

2 3 · Sym6 22 2

3 M24 23 23 2

3 He 23 23 2

4 Co1 24 26 24 2

5 M 25 210 210 25 26

n 3[n2 ]2 · Sp(2n, 2) 2n 2
n(n−1)

2
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In the next section we start considering the concrete variants. Our
method of comparing the structures of G1 and Gn will be very simple.
Given the normal factors of G1 and Gn we can compute the chief factors
of G1n in two different ways and compare the results.

Notice that the kernel K1n of the action of G1n on resG({x1, xn}) coin-
cides with O2(G1n) and

G1n = G1n/K1n
∼= Ln−1(2),

since Gn ∼= Ln(2).
Let mi(F ) be the number of chief factors of G1n inside K1n, isomorphic

to F and calculated by restricting to G1n of the normal structure of Gi
(where i = 1 or n). We will use the following notation: T for the trivial
1-dimensional module; N for the natural module of G1n (whose non-zero
vectors are indexed by the elements of type 2 incident to x1 and xn); N∗

for the dual natural module; X for any non-trivial module (in many cases
mi(X) = mi(N) +mi(N

∗)) and others.

10.2 Rank three case

In this section we consider the case n = 3. The condition (∗2) holds due
to (9.2.2 (iii)). So (9.3.1), (9.3.3), (9.3.4), (9.4.5), and (9.4.6) apply. In
particular, these results imply that Q = K3 is a (finite) 2-group. It follows
that G13

∼= Sym3
∼= L2(2) and every chief factor G13 inside K3 is an

elementary abelian 2-groups of rank one (the trivial module T ) or two (the
natural module N).

Let first G be a Petersen type geometry. Then resG(x1) ∼= G(Alt5) and
G1
∼= Alt5 or Sym5.
Suppose first that K1 = L1. Then, since the image of G13 in G1 is Sym3

or Sym3 × 2 in view of (9.4.5) and (9.4.6), we conclude that m1(N) = 0.
This is clearly impossible since the image of G13 in G3 is isomorphic to
Sym4, which implies that m3(N) ≥ 1. Thus E := K1/L1 is non-trivial
and by (9.4.2) E∗ is a G1-admissible representation module of G(Alt5).
By (3.9.2) and (8.2.3 (v)) we conclude that E, as a module for O2(G1) ∼=
Alt5 is an indecomposable extension of the (self-dual) 4-dimensional natural
module by a trivial module of dimension 1 or 2. This means particularly
that

m1(N) = 2.

One of the 2-dimensional chief factors appears in the image of G13 in G3

which leaves just one 2-dimensional chief factor of G13 inside K3. Therefore,
G3 has a unique non-trivial chief factor in K3. It now follows from (9.3.1)
and (9.3.2) that V1

∼= 23. Furthermore, since G3 has a unique nontrivial
chief factor in K3, (9.3.4) and (9.3.5) imply that |H2| ≤ 2.

Now we are ready to prove the following.

Proposition 10.2.1 Let G be a P -geometry of rank 3 and G be a flag-
transitive automorphism group of G. Then G1

∼= Sym5, G3
∼= L3(2) and

either
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(i) K1 is the natural 4-dimensional module for G1 and K3
∼= 23 is the

dual natural module of G3 (M22-shape), or

(ii) K1 is the natural module of G1 indecomposably extended by the triv-
ial 1-dimensional module and K3 is an extension of the trivial 1-
dimensional module by the dual natural module of G3 (AutM22-
shape).

Proof. Since H1 6= H2, we must have G1
∼= Sym5. Suppose first that

H2 = 1. Then |K1| = 24, hence L1 = 1 and K1 is the (natural) module for
G1
∼= Sym5 and we are in case (i).
Suppose now that |H2| = 2. Then |K1| = 25. Observe that H2 acts

trivially on Σ[x1] (which is the Petersen graph of diameter 2) and hence
H2 ≤ K1. If H2 ≤ L1 then H2 is normal in both G3 and G1, which is
impossible by (9.2.1). Hence L1 = 1 and we are in case (ii). 2

Now suppose that G is of tilde type. We first deal with the exceptional
configuration from (9.2.8).

Proposition 10.2.2 If Q = H1, then G1
∼= 3 ·Alt6 and G3

∼= L3(2) (Alt7-
shape).

Proof. Since Q = H1 we have H/H1
∼= L3(2). Note that G3 = H acts

transitively on the set of links incident to x3 and that the stabilizer of such
a link induces on the three vertices incident to the link a group Sym3. This
means, in particular, that G3 is transitive on the 14 vertices from ∆1(x3).
This uniquely specifies the action of H/H1

∼= L3(2) on ∆1(x3) as on the
cosets of a subgroup Alt4. One of the properties of this action is that the
stabilizer of x1 in H/H1 (isomorphic to Sym4) acts faithfully on Σ1(x3)
(where as usual Σ = Σ[x1]). It follows that the vertex-wise stabilizer of
Σ1(x3) acts trivially on the entire ∆1(x3). In particular, K1 acts trivially
on ∆1(x3). Since G1 acts transitively on the vertex set of Σ, we conclude
that

K1 = L1 = N1.

By (9.4.6) this means that |K1| ≤ 2. Therefore, |G13| ≤ 25 · 3, which
implies that |H1| ≤ 4. By (9.3.1) and (9.3.2), we now have that H2 = 1
and |H1| ≤ 2. We claim that in fact H1 = 1. Indeed, consider a vertex
u adjacent to x3 and the stabilizer G(x3, u) = H(u) of x3 and u. Clearly,
H(u) induces on ∆1(u) a group Alt4. Since H1 is normal in H(u) and since
Alt4 has no normal subgroup of index two, H1 must act trivially on ∆1(u).
Since u was arbitrary we have that H1 = H2 and hence, H1 = 1. Thus,
G3 = H ∼= L3(2) and, clearly, G1

∼= 3 ·Alt6 (since |G13| = 23 · 3). 2

Now suppose Q 6= H1 and hence Q/H1
∼= 23 by (9.2.4). We will next

discuss H2. By (9.2.2), H2 fixes Σ vertex-wise. That is, H2 ≤ K1.

Lemma 10.2.3 The image of H2 in E = K1/L1 has order at most 23.

Proof. Let (E∗, ϕ) be the representation of resG(x1) as in (9.4.2).
Then ϕ is defined on the set of links contained in Σ and if y is such a
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link then ϕ(y) is the subgroup of index 2 in E (a 1-subspace in E∗) which
is the elementwise stabilizer of the pair {Σ1,Σ2} of quints, other than Σ
containing y.

An element g ∈ H2 fixes every vertex at distance at most 2 from x3 in
the derived graph of G. This means that g stabilizes every quint containing
a vertex adjacent to x3. Hence the image of g in E is contained in the
intersection of the hyperplanes ϕ(y) taken for all the links y contained in
Σ and containing a vertex adjacent to x3. By (the dual version of) (3.8.5
(i)) the intersection has dimension 3 and the result follows. 2

Since L1 is centralized by O2(G1), it is clearly centralized by O2(G13)
and hence (10.2.3) immediately implies the following

Lemma 10.2.4 G13 has at most one 2-dimensional chief factor inside H2.
2

Lemma 10.2.5 m3(N) ≤ 4.

Proof. We estimate the number of chief factors of G13 treating it
as a subgroup of G3. One such factor is in G13/Q ∼= Sym4, one inside
Q/H1

∼= 23. Since | H1/H2 |≤ 23 by (9.3.1), there is at most one factor in
H1/H2 and finally we have at most one factor in H2 by (10.2.4). 2

Now we are in a position to restrict further the possibilities for E =
K1/L1.

Lemma 10.2.6 One of the following holds:

(i) E is (the dual of) the hexacode module Vh of G1
∼= 3 · S4(2);

(ii) E is dual to the 5-dimensional orthogonal module Vo of G1/O3(G1) ∼=
O5(2);

(iii) E is the (self-dual) 4-dimensional natural symplectic module of
G1/O3(G1) ∼= S4(2);

(iv) E = 1.

Proof. By (10.2.5) we have m1(N) ≤ 4. On the other hand, there is
one 2-dimensional chief factor of G13 inside G13/K1 which leaves us with at
most three such factors inside E = K1/L1. Recall that by (9.4.2) and (3.8.1)
the dual of E is a quotient of the 11-dimensional universal representation
module of G(3 · S4(2)) and the universal module is the direct sum

Vo ⊕ Vh,

where Vh is irreducible and Vo contains a unique proper submodule which
is 1-dimensional. Under the natural action of G13/K1 each of the direct
summands contains two 2-dimensional chief factors which gives the result.
2

Suppose first that we are in case (i) of (10.2.6). Then E ∼= Vh involves
two 2-dimensional chief factors of G13 and hence m1(N) = 3. Returning
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to G3, we see that H1/H2
∼= 23 (the natural module of G3

∼= L3(2)), while
H2 is a trivial module. It follows from (9.3.4) and (9.3.5) that |H2| ≤ 2.
Since H1 6= H2, we have that G1 is isomorphic to 3 · Sym6 (rather than to
3 ·Alt6). Comparing now the orders of G1 and G3, we observe that |H2| = 2
and L1 = 1, which gives the following

Proposition 10.2.7 Let G be a rank 3 tilde geometry, G be a flag-transitive
automorphism group of G. Suppose that Q 6= H1 and E = K1/L1 is the
hexacode module. Then G1 ∼ 26.3 · Sym6 and G3 ∼ 2.23.23.L3(2) (M24-
shape). 2

It remains to consider the case where O3(G1) acts trivially on E. This
situation is handled in the next lemma.

Proposition 10.2.8 Let G be a rank 3 tilde geometry, G be a flag-transitive
automorphism group of G. Suppose that Q 6= H1 and O3(G1) acts trivially
on E = K1/L1. Then G1 ∼ 25.3 · Sym6, G3 ∼ 23.23.L3(2), furthermore

(i) N1 = 1 and L1 = Z(G1) is of order 2;

(ii) K1 = O2(G1) and K1/L1 is the 4-dimensional symplectic module for
G1/O2,3(G1) ∼= S4(2);

(iii) H1 is the dual natural module for G3
∼= L3(2) and Q/H1 is the natural

module.

(S4(2)-shape).

Proof. By the hypothesis of the lemma we are in case (ii), (iii) or
(iv) of (10.2.6). Since Q/H1

∼= 23, m3(N) is at least two, so E can not
be trivial, i.e., the case (iv) does not occur. So E necessarily involves the
4-dimensional symplectic module, and hence m3(N) = 3. From this we
obtain that H1/H2

∼= 23 (the natural module) and that H2 is a trivial
module. In particular, |H2| ≤ 2. Arguing as in the proof of (10.2.3) but
using (3.8.5 (ii)) instead of (3.8.5 (i)) we conclude that H2 ≤ L1. We
are going to show that in fact H2 is trivial. Towards this end notice that
CG(H2) ≥ G1 and also CG(H2) ≥ G∞1 , since |L1| ≤ 4. Clearly,

〈G3, G
∞
1 〉 = G,

which means that H2 = 1. It remains to determine the normal factors
of G1. First of all, since H1 6= H2 we have G1

∼= 3 · Sym6. Therefore,
|K1| = 25. Suppose that L1 = 1 and so E ∼= 25. Then, as G1/O3(G1)-
module, E is a non-split extension of a 4-dimensional irreducible module
by a 1-dimensional one. In particular, L1 is elementary abelian. We next
notice that Q is also elementary abelian. Indeed, let C be the full preimage
in Q of subgroup C of order two from Q = Q/H1. Clearly, C is abelian
(since H1 ≤ Z(Q)). If it is not elementary abelian then the squares of
the elements of C form a subgroup of order 2 in H1, which is invariant
under the stabilizer of C in H/Q ∼= L3(2). This is impossible since Q/H1

and H1 are respectively the natural and the dual natural modules. Thus,
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C is elementary abelian. Since C was arbitrary, we conclude that Q is
elementary abelian.

Set Z = Q ∩ K1. Clearly, QK1 = O2(G13). Thus, |Z| = 23 and
Z = Z(O2(G13)). Since G13 induces on Z a group Sym3, it follows that
Z contains a subgroup Z1 of order 2 central in G13. On the other hand,
G13 acting on E = K1 leaves invariant no 1-dimensional subspace. The
contradiction proves that L1 6= 1. Hence E ∼= 24 and L2

∼= 2. Finally, since
G13 leaves invariant no 1-dimensional subspace in H2, L1 6≤ H2. Hence L1

acts non-trivially on ∆1(x3). Therefore, |L1/N1| = 2 and hence N1 = 1.
This completes the proof. 2

10.3 Rank four case

Recall that we follow the inductive approach and assume that in the rank
4 P - or T -geometry G under consideration the point residue resG(x1) is one
of the known rank 3 geometries of appropriate type and G1 is a known
flag-transitive automorphism group of the residue.

First we rule out the exceptional configuration from (9.2.7).

Lemma 10.3.1 For every flag-transitive action on P - or T -geometry of
rank n ≥ 3 we have H/Q ∼= Ln(2).

Proof. Suppose that H/Q 6∼= Ln(2). Then by (9.2.7) we may assume
that n = 4 and H ∼= Alt7 (with Q = 1) or H ∼= 24.Alt7 (with Q ∼= 24).
If Q = 1 then H ∼= Alt7 and hence G14

∼= L3(2) which immediately yields
a contradiction with the structure of G1 (compare (10.2.1)). So G is of
tilde type and Q ∼= 24. Then G14

∼= 24.L3(2) and again we run into a
contradiction with the structure of G1 (compare (10.2.2), (10.2.7), (10.2.8)
and (12.1.1)). 2

Since resG(x1) is one of the known rank three Petersen type or tilde type
geometries, we obtain from Tables VII a and VII b that (∗3) holds along
with (∗2). This means that (9.3.1), (9.3.3), (9.3.4), (9.4.5), and (9.4.6)
apply. In particular, H4 = 1 and |L1| ≤ 4. Hence, Q and K1 are (finite) 2-
groups, and G14 is an extension of a 2-group by L3(2). As we will see below,
every chief factor of G14 in O2(G14) is either the trivial 1-dimensional, or
the natural or the dual natural module for G14

∼= L3(2) and we continue
to use notation introduced at the end of Section 10.1.

We will again start with the case where G is a Petersen type geometry.
Then resG(x1) is isomorphic to either G(M22) or G(3 ·M22).

Proposition 10.3.2 If G is a P -geometry of rank 4 and |H1/H2| ≤ 2 then
G4
∼= L4(2) and G1 is isomorphic to either M22 or 3 ·M22 (M23-shape).

Proof. By (9.3.2) we have H2 = 1 and hence |H1| ≤ 2. If H1 = 1
then G4

∼= L4(2) and |G14| = 26 · 3 · 7. Hence K1 = 1 and G1
∼= M22 or

3 ·M22. So it only remains to show that |H1| 6= 2. Suppose to the contrary
that H1

∼= 2. Then H1 = Z(G4) = Z(G34). Since G34 is of index two in
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G3, we obtain that H1 is normal in both G4 and G3, by (9.2.1) this is a
contradiction. 2

Now assume that |H1/H2| ≥ 2. Then by (9.3.1), H1/H2
∼= 26, the

module being the second exterior power of the natural module for G4. It
follows that

m4(X) = m4(N) +m4(N∗) ≥ 3.

Since O2(G14/K1) ∼= 23.L3(2) involves exactly one 3-dimensional factor, at
least two of such factors are in K1. Therefore, E = K1/L1 is non-trivial.

Recall that by (4.2.4) the universal representation module of G(M22) is
isomorphic to the 11-dimensional Todd module C11; as a module for M22 the
latter module is an indecomposable extension of the 1-dimensional trivial
module by the 10-dimensional Todd module C10. By (4.4.6) the universal
representation module for G(3 ·M22) is the direct sum

C11 ⊕ T12,

where T12 is a 12-dimensional self-dual irreducible 3 · AutM22-module on
which the normal subgroup of order 3 acts fixed-point freely. Since E is
non-trivial (as a module for G1), it involves either C10, or T12, or both. In
either case, m1(X) ≥ 4. Returning to H, we obtain from (9.3.1) and (9.3.2)
that H2/H3

∼= 24, the dual natural module. Now the branching starts. Let
us consider the possibilities in turn.

Proposition 10.3.3 Let G be a T -geometry of rank 4 and G be a flag-
transitive automorphism group of G. Suppose that E∗ involves C10. Then
G4 ∼ 2.24.26.L4(2),

G1 ∼ 210.AutM22 or 210.3 ·AutM22.

Furthermore, K1 = O2(G1) is the irreducible Golay code module C10 for
G1/O2,3(G1) ∼= AutM22. (Co2-shape).

Proof. By the assumption and the paragraph before the lemma we
know that E∗ possesses a quotient isomorphic to C10. Hence E contains
a submodule U , isomorphic to C10. Let Û be the full preimage of that
submodule (subgroup) in K1. Since |L1| ≤ 4 and since C10 is not self-

dual, we conclude that Û is an abelian group. Furthermore, since the only
other possible non-1-dimensional chief factor of G1 in K1 is T12, which has
dimension 12 (rather than 10), the Û falls into Z(K1). It follows from
[MSt90] and [MSt01] that C10 not an FF -module for G1. So J(S) = J(K1)
is normal in G1, where S ∈ Syl2(G14). By (9.2.1), this means that J(S)
cannot be normal in G4. Invoking (9.5.3), we conclude that H3∩Z(Q) is of
index at most two in H3 and H3 ∩ Z(Q) is a submodule in the direct sum
of a 1-dimensional module and the natural module of G4. In particular,
m4(X) ≤ 5. Returning to E, we see that E∗ cannot involve T12 along with
C10. Hence E ∼= C10 or E ∼= C11, so m1(X) = 4.

By the above H3 does not involve 3-dimensional chief factors for G14,
which implies by (9.3.4) and (9.3.5) that |H3| ≤ 2. Notice now that G1

∼=
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AutM22 or 3 · AutM22, since H2 induces a non-trivial action on Σ3(x4).
Considering G14 as a subgroup of G4 we see that

|G14| ≤ 217 · 3 · 7.

On the other hand, considering G14 as a subgroup of G1 we have

|G14| ≥ 217 · 3 · 7.

Therefore, we have the equality in both cases. This implies the equalities

|H3| = 2, L1 = 1 and |E| = 210

and completes the proof. 2

It remains to consider the case where E∗ is non-trivial but does not
involve C10. In that case E ∼= E∗ ∼= T12 (since T12 is self-dual) and this
situation is covered by the following lemma.

Lemma 10.3.4 [pet4c] Let G be a P -geometry of rank 4 and G be a flag-
transitive automorphism group of G. Suppose that E ∼= T12. Then

G1 ∼ 2.212.3 ·AutM22 and G4 ∼ 24.24.26.L4(2),

(J4-shape).

Proof. The hypothesis of the lemma immediately implies that
m1(X) = 5 and hence H3 involves exactly one non-trivial composition
factor. By (9.3.4) and (3.2.7) we obtain that H3 ∩Z(Q) has index at most
two in H3 and H3 ∩ Z(Q) is either the the natural module, or that plus a
1-dimensional module. In particular,

|G14| ≥ 220 · 3 · 7,

which implies that |L1| ≥ 2. Since |L1| ≤ 4, H2 involves at most one 1-
dimensional composition factor. By (9.5.3), H3 ≤ Z(Q). Suppose H3

∼= 25

and let 〈g〉 be the 1-dimensional submodule of H3 (so that g ∈ Z(H)).
Observe that g ∈ K1. Since E∗ ∼= T12, E, as a G14-module, contains no
1-dimensional composition factors. Thus, g ∈ L1 and hence CG(g) contains
G∞1 , leading to a contradiction, since also CG(g) ≥ H. Thus, H3

∼= 24 and
|L1| = 2. Finally, since G is of Petersen type, we have L1 = N1 and hence
|N1| = 2. This completes the proof. 2

Thus we have completed the consideration of the case where G is rank
4 of Petersen type. Now suppose G is of tilde type.

By (10.3.1) and (9.2.4) we have H/Q ∼= L4(2) and Q/H1
∼= 24. By the

induction hypothesis we also have that resG(x1) is one of the three known
geometries:

G(M24), G(He) and G(37 · S6(2)).

In each of the three cases G1 is determined uniquely (as M24, He, or
37 · S6(2), respectively) by the condition that it acts flag-transitively on
resG(x1).
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Proposition 10.3.5 Let G be a T -geometry of rank 4 and G be a flag-
transitive automorphism group of G. Suppose that |H1/H2| ≤ 2. Then

(i) H = G4 is a split extension of Q ∼= 24 by L4(2);

(ii) G1 is isomorphic to M24 or He.

(truncated M24-shape).

Proof. By the hypothesis we conclude that m4(X) = 2, which means
that G1 has no non-trivial chief factors in K1. This yields K1 = L1. We
claim that H1 must be trivial. Indeed, let Θ = Σ[x2]. Consider the action
of H1 on Θ. Observe that H1 acts trivially on ∆1(x4) and H1 is normal
in H. According to Table VII, the vertex-wise stabilizer in G3 of Θ1(x4)
induces on Θ2(x4) a group 23 which is irreducible under the action of G24

by (9.3.1). This implies that H1 acts trivially on Θ2(x4). Since for x2 we
can take any quint containing x4, H1 acts trivially on ∆2(x4), i.e., H1 = 1.
Hence

|G14| = 210 · 3 · 7.

For G1 this means that either G1
∼= M24 or He, or G1/K1

∼= 37 ·S6(2) and
|K1| = 2.

Now we going to prove (i). The subgroup G3 induces on resG(x3) the
group G3

∼= Sym3 × L3(2). Hence |K3| = 26. Let g be an element of order
three such that 〈g〉 maps onto the normal subgroup of order three in G3.
Observe that G34 has two 3-dimensional chief factors in K3. This implies
that either g acts trivially on K3, or it acts on K3 fixed-point freely. In the
former case one of the minimal parabolics is not 2-constraint. This yields
a contradiction, since G1 contains such a minimal parabolic. Hence g acts
on K1 fixed-point freely. It follows that

CG3
(g) ∼= 3× L3(2).

Let R = CG3
(g)∞. Observe that (H1 ∩ Q)gR is a complement to Q in

G34. It follows from Gaschütz’ theorem (8.2.8) that H splits over Q and
(i) follows.

Suppose that G1
∼= 37 ·S6(2). Set R = O2(G14). The subgroup K1 is the

unique normal subgroup of order two inG14. ConsideringG14 as a subgroup
of G4

∼= 24 : L4(2), we see that, as an G14/R-module, R/K1
∼= 26 is a direct

sum of the natural module and the module dual to the natural module. On
the other hand, considering G14/K1 as a subgroup of G1

∼= 37 · S6(2) and
factoring out the normal subgroup 37, we obtain that the same R/K1 is an
indecomposable module, a contradiction which implies (ii). 2

Proposition 10.3.6 Let G be a T -geometry of rank 4 and G be a flag-
transitive automorphism group of G. Suppose that |H1/H2| > 2 and G1 6∼=
37 · S6(2). Then G1 ∼ 211.M24 and K1 = O2(G1) is the irreducible Golay
code module C11 for G1

∼= M24 (Co1-shape).

Proof. In view of (9.3.1), we have H1/H2
∼= 26. Consequently,

m4(X) ≥ 4. Since in G14/K1 we only find two non-trivial chief factors,
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we conclude that K1 6= L1. If resG(x1) ∼= G(He) then, according to (4.6.1),
dimE∗ is at least 51. So the order of a Sylow 2-subgroup S of G14 is at least
261. On the other hand, taking into account (9.3.1), (9.3.4) and (9.3.3), we
compute that |S| ≤ 26+4+6+4+30 = 250, a contradiction rules out this case.

Thus we can assume that resG(x) ∼= G(M24). Then according to (4.3.1),
E∗ ∼= C11, the irreducible Todd module. Now we can compute that
m1(X) = 5. Therefore, H2/H3

∼= 24 (compare (9.3.1) and (9.3.2)). Fur-
thermore, H has no non-1-dimensional chief factors in H3. It follows from
(9.3.4) and (9.3.5) that |H3| ≤ 2. Computing the order of G14 in two ways,
we see that |H3| = 2 and L1 = 1. This completes the proof. 2

We will deal with the possibility resG(x1) ∼= G(37 ·S6(2)) in Section 10.6
where we will obtain an infinite series of configurations involving the sym-
plectic groups. Notice that we have proved that H1/H2

∼= 26 even if
resG(x1) ∼= G(37 · S6(2)).

10.4 Rank five case

Here we split cases according to the isomorphism type of the point residue
resG(x1). As usual we start with Petersen type geometries. The universal
representation group of G(M23) is trivial and by Proposition 5 we obtain
the following.

Proposition 10.4.1 G(M23) is not the residue of a point in a flag-
transitive P -geometry of rank 5. 2

Now we turn to the situation when the residue is the P -geometry G(Co2)
or its universal 2-cover G(323 · Co2).

Proposition 10.4.2 Let G be a P -geometry of rank 5, G be a flag-
transitive automorphism group of G. Suppose that resG(x1) ∼= G(Co2)
or G(323 · Co2). Then G1

∼= Co2 or 323 · Co2, respectively, |L1| = 2,
E = K1/L1, as a module for G1/O2,3(G1), is isomorphic to the 22-

dimensional section Λ
(22)

of the Leech lattice modulo 2 (BM-shape).

Proof. By Table VII a in addition to (∗2) and (∗3) we also have (∗4).
So H5 = 1. Considering the image of G15 in G1 (see Table VII a once
again), we determine that m1(X) (which is the number of non-trivial chief
factors of G15 inside K15) is at least 2. Hence H1/H2

∼= 210 by (9.3.1). In
turn, this means that m5(X) ≥ 3, and hence K1 6= L1. By (5.2.3 (v)) and
the paragraph after the proof of that lemma we have

E ∼= Λ
(23)

or Λ
(22)

.

From the structure of these modules we deduce that m1(X) = 5. Now
it follows that H2/H3

∼= 210, H3/H4
∼= 25 and H4 contains, as an H-

module, a unique non-trivial composition factor. Now (9.3.4) and (3.2.7)
imply that H4 is either the natural module or the direct sum of that with
a 1-dimensional module. Suppose H4 contains a 1-dimensional submodule,
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say 〈g〉. Then, clearly, g acts trivially on Σ = Σ[x1] and so g ∈ K1.
Furthermore, it follows from (5.2.4) that G15 acting on E = K1/L1 does
not leave invariant a 1-space. Hence g ∈ L1. However, this means that

CG(g) ≥ 〈G5, G
∞
1 〉,

a contradiction. Hence H4
∼= 25. It remains to determine whether E ∼=

Λ
(22)

and |L1| = 2 (since G is a Petersen type geometry, we have L1 = N1),

or E ∼= Λ
(23)

and L1 = 1. Suppose the latter holds. Then K1 is an abelian
group. Observe that H4 ≤ K1. This means that K1 ≤ CH(H4) = H1, i.e.,
K1 ≤ H1. However, this means that K1 acts trivially on resG(x5). Since G1

is transitive on the vertices of Σ, K1 stabilizes every Σ[y] where y is a point
(an element of type 1) incident with a vertex of Σ. This yields K1 = L1,

a contradiction. Hence E = K1/L1
∼= Λ

(22)
and |L2| = 2, which gives the

result. 2

Proposition 10.4.3 Let G be a P -geometry of rank 5 and G be a flag-
transitive automorphism group of G. Suppose that resG(x1) ∼= G(J4). Then
G1
∼= J4 and G5 ∼ 210.L5(2). (truncated J4-shape).

Proof. Notice that in the (∗4) might not hold. So we need to use a
different line of attack. First suppose that |H1| ≤ 2. Then H2 = 1 and
m5(X) = 1, whereas, when we view G15/K1 as a subgroup of G1

∼= J4, we
find that m1(X) ≥ 3. The contradiction proves that H1/H2

∼= 210. (Since
(∗2) holds, (9.3.1) applies and |S/H2| = 220, where S ∈ Syl2(G15)). We
now turn to G1. By (7.1.3) the universal representation module of G(J4) is
trivial and by (9.4.2) we have K1 = L1. Furthermore, by (9.4.4), L1 = N1.
Since (∗i) holds for i = 2 and 3, we obtain from (9.4.5) that K1 ≤ H3. This
gives |S/H3| ≤ |S/K1| = 220. Therefore, H2 = H3 = K1 = 1 and the result
follows. 2

Now suppose G is of tilde type. The case resG(x) ∼= G(335 · S8(2)) will
be considered in Section 10.6 along with other configurations involving the
symplectic groups. So we have only one possibility to consider here.

Proposition 10.4.4 Let G be a T -geometry of rank 5, G be a flag-
transitive automorphism group of G. Suppose that resG(x1) ∼= G(Co1).

Then G1 ∼ 2.224.Co1, where L1 is of order 2, and K1/L1 is Λ
(24)

, the
Leech lattice modulo 2. (M-shape)

Proof. In the considered situation (∗i) holds for i = 2, 3 and 4. In

particular, H5 = 1 and |L1| ≤ 4. By (5.3.2) we have that E = Λ
(24)

.
Since the condition (∗∗) fails for G(Co1), (9.4.4 (iv)) implies that L1 = N1.
Thus, |L1| ≤ 2. We claim that K1 is nonabelian, and hence L1 6= 1. If
K1 is abelian then K1 ≤ CH(H4) ≤ Q, since H4 ≤ K1. Therefore, K1

acts trivially on resG(x5) and, by transitivity of G1 on the vertices of Σ,
it acts trivially on resG(w) for all vertices w ∈ Σ. However, this means
that K1 = L1, a contradiction. Thus, |L1| = 2. We can now compute that
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m1(X) = 8 and that |S| = 246. This forces H1/H2
∼= 210, H2/H3

∼= 210,
H3/H4

∼= 25, and also that H4 has two composition factors: a 1-dimensional
and a 5-dimensional. 2

10.5 Rank six case

Suppose n = 6 and G is not of S12(2)-shape. Then resG(x) is either G(BM),
or G(34371 · BM), or G(M). I all three cases the universal representation
module is trivial. This is the reason, in a sense, why non of these geometries
appear as a point residue in a flag-transitive P - or T -geometry of rank 6
(cf. Proposition 5).

10.6 The symplectic shape

In this section we prove the following.

Proposition 10.6.1 Let G be a T -geometry of rank n ≥ 4 and G be an
automorphism group of G. Suppose that

resG(x1) ∼= G(3[n−1
2 ]2 · S2n−2(2)).

Then
G1 ∼ 2.22n−2.3[n−1

2 ]2 · S2n−2(2);

Z(G1) is of order 2 and K1/Z(G1) is the natural symplectic module for
G1/O3(G1) ∼= S2n−2(2);

Gn ∼ 2
n(n−1)

2 .2n.Ln(2);

Ln is the exterior square of the natural module of Gn ∼= Ln(2) and Kn/Ln
is the natural module for Gn. (S2n(2)-shape).

Proof. First we claim that H2 = 1. Indeed, let w be a vertex at
distance three from xn. By (9.1.5) without loss of generality we may assume
that w is contained in Θ = Σ[xn−3]. According to Table VII b, H2 acts
trivially on Θ, and hence H2 fixes w. Since w was arbitrary, H2 = H3

and hence H2 = 1. Next, we claim that |H1| > 2. Indeed, if n = 4 then
this was shown in Section 10.3. Thus, without loss of generality, we may
assume that n ≥ 5. We have H/Q ∼= Ln(2) and Q/H1

∼= 2n. Hence
mn(X) = 2, where as above mn(X) is the number of non-1-dimensional
chief factors of G1n in O2(G1n). Furthermore, the non-1-dimensional chief
factors inside H/Q and inside Q/H1 have dimension n − 1. On the other
hand, considering the image of G1n in G1, we immediately obtain that

G1n has chief factors of dimensions n − 1 and (n−1)(n−2)
2 . The latter is

clearly greater than n − 1, a contradiction. Hence |H1| > 2. As (∗2)

holds, we have that H1
∼=
∧2

U , the second exterior power of the natural
module U of G1. Since also H/Q ∼= Ln(2) and Q/H1

∼= 2n, we know
the exact size of H and also that mn(X) = 4. Now turning to G1 we
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find that G1
∼= 3[n−1

2 ]2 · S2n−2(2) and |K1| = 22n−1. Comparing with the

structure of the universal representation module of G(3[n−1
2 ]2 · S2n−2(2))

(cf. the paragraph before (2.4.1), (3.5.3) and (3.10.1)), we see that the
faithful component of that module is not present in E∗, where E = K1/L1.
Therefore, E ∼= 22n−2 and |L2| = 2, or E ∼= 22n−1 and L1 = 1.

The second possibility can be ruled out by induction on n. By (10.2.8)
it does not take place for n = 3. Suppose it does take place for n = 4.
Then E = K1/L1 is the dual of the 7-dimensional orthogonal module for
G1/O3(G1) ∼= S6(2) and by (10.2.8) G12/K1

∼= 21+4 : 3 ·S4(2). Let us turn
to G2. By (9.4.1) K2/L2 is a tensor product of the 2-dimensional module of
G2/K

+
2
∼= Sym3 and a representation module U+

2 of res+
G (x2) ∼= G(3·S4(2)).

This representation module is 5-dimensional when considered as a section
of E and 4-dimensional when considered as a section of O2(G12/K1), which
is a contradiction. Similar argument works for larger n (see [ShSt94] for
any missing details). 2

10.7 Summary

In this section we present Tables VIII a and VIII b where we summarise the
possible shapes of P - and T -geometries respectively (cf. (10.2.1), (10.2.2),
(10.2.7), (10.2.8), (10.3.2), (10.3.3), (10.3.4), (10.3.5), (10.3.6), (10.4.2),
(10.4.3), (10.4.4) and (10.6.1)). In the tables “Tr” stays for “truncated”.

Table VIII a. Shapes of amalgams for P -geometries

rank shape G1 Gn

3 M22 24.Sym5 23.L3(2)

3 AutM22 25.Sym5 2.23.L3(2)

4 M23 (3·)M22 L4(2)

4 Co2 210.(3·)AutM22 2.24.26.L4(2)

4 J4 2.212.3 ·AutM22 24.24.26.L4(2)

5 Tr J4 J4 210.L5(2)

5 BM 2.222.(323·)Co2 25.25.210.210.L5(2)
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Table VIII b. Shapes of amalgams for T -geometries

rank shape G1 Gn

3 Alt7 3 ·Alt6 L3(2)

3 S6(2) 25.3 · Sym6 23.23.L3(2)

3 M24 26.3 · Sym6 2.23.23.L3(2)

4 Tr M24 M24 or He 24.L4(2)

4 Co1 211.M24 2.24.26.24.L4(2)

5 M 2.224.Co1 26.25.210.210.25.L5(2)

n S2n(2) 2.22n−2.3[n−1
2 ]2 · S2n−2(2) 2

n(n−1)
2 .2n.Ln(2)
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Chapter 11

Amalgams for
P -geometries

In this chapter we consider the amalgam of maximal parabolics with shapes
given in Table VIII a. We consider the seven shapes one by one in the seven
sections of the chapter. In Section 11.6 we show that an amalgam of trun-
cated J4-shape does not lead to a P -geometry. Originally this result was
established in [Iv92b] and here we present a much shorter proof which makes
an essential use of the classification of the flag-transitive T -geometries of
rank 4. For the remaining shapes we prove that the isomorphism type of an
amalgam is uniquely determined by that of G1. Thus there is a unique iso-
morphism type of amalgam for each of the shapes M22, AutM22 and J4 and
two types for the shapes M23, Co2 and BM . Let A be the amalgam of M23-
shape with G1

∼= 3 ·M22. If the universal completion of A would be faithful,
the corresponding coset geometry will be a 2-cover of G(M22). Since the
latter geometry is 2-simply connected by Proposition 3.6.5 in [Iv99], there
are no faithful completions. Thus up to isomorphism we obtain at most
eight amalgams which is exactly the number of amalgams coming from the
known examples as in Table I. This proves Theorem 3 for P -geometries and
in view of Proposition 4 and Theorem 2 completes the proof of Theorem 1
for P -geometries.

11.1 M22-shape

In this section G is a rank 3 P -geometry with the diagram

2
◦

2
◦ P

1
◦,

G is a flag-transitive automorphism group of G, such that

G1 ∼ 24.Sym5, G3 ∼ 23.L3(2),

where K1 = O2(G1) is the natural module for G1
∼= Sym5 and K3 =

O2(G3) is the dual natural module for G3
∼= L3(2).

187
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Lemma 11.1.1 G1 splits over K1.

Proof. Table VI in Section 8.2 shows that H2(G1,K1) is trivial, hence
the result. 2

Lemma 11.1.2 G3 splits over K3.

Proof. The subgroup G1 induces the full automorphism group Sym5

of the Petersen subgraph Σ(x1) with K1 being the kernel. Hence by (11.1.1)
G13 is the semidirect product of K1 and a group S ∼= 2 × Sym3. Let X
be a Sylow 3-subgroup of S. Since K1 is the natural module, the action
of X on K1 is fixed-point free. Hence S = NG1

(X). On the other hand,
X is also a Sylow 3-subgroup of G3 and CK3(X) is of order 2. This shows
that K3 = O2(CG13(t)) where t is the unique involution in CG13(X). The
action of X on K1 turns the latter into a 2-dimensional GF (4)-vector space.
Hence X normalizes 5 subgroups T1, ..., T5 of order 22 in K1. It is clear that
K1 ∩K3 is one of these subgroups. If σ is an involution in S which inverts
X, then σ acts on T = {T1, ..., T5} as a transposition and hence normalizes
a subgroup T from T other than K1 ∩ K3. Then 〈T,X, σ〉 ∼= Sym4 is a
complement to K3 in G13 and the result is by Gaschütz theorem (8.2.8).2

Lemma 11.1.3 The amalgam D = {G1, G3} is determined uniquely up to
isomorphism.

Proof. By (11.1.1), (11.1.2) and the proof of the latter lemma it is
immediate that the type of D is uniquely determined. In order to apply
Goldschmidt’s lemma (8.3.2) we calculate the automorphism group of G13.
We claim that OutG13 is of order 2. Let τ be an automorphism of G13.
By Frattini argument we can assume that τ normalizes S ∼= Sym3 × 2 (we
follow notation introduced in the proof of (11.1.2)). Clearly OutS is of
order 2. Thus it is sufficient to show that τ is inner whenever it centralizes
S. The action of S on K1 is faithful and we will identify S with its image
in OutK1

∼= L4(2) ∼= Alt8. It is an easy exercise to check that in the
permutation action of Alt8 on eight points the subgroup X is generated by
a 3-cycle. From this it is easy to conclude that

CAlt8(S) = Z(S) = 〈t〉.

Thus the action of τ onK1 is either trivial (and τ is the identity) or coincides
with that of t. In the latter case τ is the inner automorphism induced by t.

SinceH1(G3,K3) is 1-dimensional, G3 possesses an outer automorphism
which permutes the classes of complements to K3. Such an automorphism
clearly does not centralize S and hence Goldschmidt’s lemma (8.3.2) implies
the uniqueness of D. 2

Let us turn to the parabolic G2. Since K3 is the dual natural module,

G23 = CG3(z) ∼ 21+4.Sym3,

where z is an involution from K3 and K−2 = O2(G23). Since [G2 : G23] = 2,
we observe that G2 ∼ 21+4.(Sym3 × 2), which shows that G12 = CG1

(z)
where z ∈ K1 ∩ K3. Thus the subamalgam F = {G12, G23} is uniquely
located inside B up to conjugation.
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Proposition 11.1.4 All the amalgams of M22-shape are isomorphic to
A(M22,G(M22)) and its universal completion is isomorphic to 3 ·M22.

Proof. In view of the paragraph before the proposition all we have
to show is that the universal completion G̃2 of F possesses at most one
homomorphism ψ whose restriction to K2

∼= 21+4 is an isomorphism and
ψ(G̃2)/ψ(K2) ∼= Sym3 × 2. Since K2 is extraspecial with centre of order
2, the kernel of ψ is of index 2 in C

G̃2
(K2) disjoint from Z(K2). A direct

application of (8.4.3) proves the uniqueness of ψ. The last sentence is by
[Sh85] (see also Section 3.5 in [Iv99]). 2

11.2 AutM22-shape

In this section G is a rank 3 P -geometry with the diagram

2
◦

2
◦ P

1
◦,

G is a flag-transitive automorphism group of G such that

G1 ∼ 25.Sym5, G3 ∼ 24.L3(2),

where K1 = O2(G1) is the natural module for G1
∼= Sym5, indecompos-

ably extended by the trivial 1-dimensional module and K3 = O2(G3) is an
extension of the trivial 1-dimensional module by the dual natural module
of G3

∼= L3(2).

Lemma 11.2.1 G3 splits over K3.

Proof. Consider

G13 ∼ 25.(Sym3 × 2) ∼ 24.Sym4

and let X be a Sylow 3-subgroup in G13 (which is also a Sylow 3-subgroup in
G1 and G3). The structure of K1 shows that Y := O2(CG1

(X)) is of order
22 and since CG3

(X) ≤ K3, we conclude that K3 = CG13
(Y ). Considering

the fixed-point free action of X on the codimension 1 submodule in K1 we
find (compare the proof of (11.1.1)) a subgroup T of order 22 in K1 which
is (a) disjoint from K1 ∩ K3; (b) normalized by X, (c) normalized by an
involution σ which inverts X. This produces a complement 〈T,X, σ〉 to K3

in G13. Since G13 contains a Sylow 2-subgroup of G3, Gaschütz theorem
(8.2.8) completes the job. 2

Lemma 11.2.2 K3 is decomposable as a module for G3
∼= L3(2).

Proof. Suppose to the contrary that K3 is the indecomposable exten-
sion of the 1-dimensional submodule Z(G3) by the dual natural module.

Then the orbits of G3 on K#
3 are of length 1 and 14. This shows that when-

ever D is a Sylow 2-subgroup in G3, the equality Z(G3) = Z(D) holds. We
may assume that D ≤ G23. Since [G2 : G23] = 2, this implies that Z(G3)
is normal in G3 and in

G2 = G23NG2
(D),

which is not possible by (9.2.1). Hence G3
∼= 2× 23 : L3(2). 2
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Lemma 11.2.3 G1 splits over K1.

Proof. Denote by K ′1 the codimension 1 submodule in K1 and adopt
the bar convention for the quotient of G1 over K ′1. Since Sym5 splits over
its natural module K ′1, it is sufficient to show that G1 = 2× Sym5. In any
case the centre of G1 is of order 2 and the quotient over the centre is Sym5.
If G1 is not as stated, it either contains SL2(5) ∼= 2 · Alt5 or is isomorphic
to the semidirect product of Alt5 and a cyclic group of order 4. In neither
of these two cases there is a subgroup G13

∼= 22 × Sym3. Hence the result.
2

Lemma 11.2.4 The amalgam D = {G1, G3} is uniquely determined up to
isomorphism.

Proof. We claim that OutG13 is of order (at most) 4. Indeed, first it
is easy to check that K1 is the only elementary abelian 2-group of rank 5
in G13 and hence it is characteristic. By Frattini argument without loss of
generality we can assume that the automorphism τ , we consider, normalizes
N := NG13

(X) ∼= 22×Sym3. Since |K1∩N | = 2, it is clear that N contains
two classes of complements to K1, which τ can permute. If S ∼= 2× Sym3

is one of the complements, then we know that OutS is of order 2 and hence
the claim follows. By the proof of (11.1.4) we know that OutG3 is of order
2 and induces an outer automorphism σ3 of G13. By (8.2.3 (vi)), we know
that OutG1 is also of order 2 and it induces an outer automorphism σ1

of G13. The automorphism σ1 centralizes K1 and hence it also centralizes
modulo K1 the complement S, on the other hand, σ3 centralizes K3 and
hence it normalizes a complement to K1 in G13. Thus σ1 and σ3 have
different images in OutG13 and the result follows by the Goldschmidt’s
lemma (8.3.2). 2

The final result of the section can be proved similar to the way (11.1.4)
was proved.

Proposition 11.2.5 All the amalgams of AutM22-shape are isomorphic
to A(AutM22,G(M22)) and the universal completion of such an amalgam
is isomorphic to 3 ·AutM22. 2

11.3 M23-shape

In this section G is a rank 4 P -geometry with the diagram

2
◦

2
◦

2
◦ P

1
◦

and G4
∼= L4(2). Then

G14
∼= 23 : L3(2), G24

∼= 24 : (Sym3 × Sym3), G34
∼= 23 : L3(2)

are the maximal parabolics in G4 associated with its action on resG(x4)
which is the rank 3 projective GF (2)-space.
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We follow the dual strategy, so our first step is to classify up to isomor-
phism the amalgams X = {G4, G3} under the assumption that G4

∼= L4(2),
G34
∼= 23 : L3(2) and [G3 : G34] = 2. Since G34 is normal in G3, in order

to determine the possible type of X we need the following.

Lemma 11.3.1 OutG34 has order 2.

Proof. Since G34 is a maximal parabolic in G4
∼= L4(2), we know that

it is the semidirect product with respect to the natural action of L ∼= L3(2)
and Q = O2(G34) which is the natural module of L. If L′ is another comple-
ment to Q in G34, then clearly there is an automorphism of G34 which maps
L onto L′. By (8.2.5) G34 contains exactly two conjugacy classes of such
complements. Clearly an automorphism which sends L onto a complement
which is not in the class of L is outer. Hence to complete the proof it is suf-
ficient to show that an automorphism σ of G34 which preserves the classes
of complements is inner. Adjusting σ by a suitable inner automorphism,
we can assume that σ normalizes L. An outer automorphism of L swaps
the natural module with its dual. Since the dual module is not involved in
Q, σ induces an inner automorphism of L and hence we can assume that σ
centralizes L. In this case the action of σ on Q must centralize the action
of L on Q. This immediately implies that σ acts trivially on Q. Hence σ is
the identity automorphism and the result follows. 2

Lemma 11.3.2 Let X = {G4, G3} be an amalgam such that G4
∼= L4(2),

G34
∼= 23 : L3(2) and [G3 : G34] = 2. Then X is isomorphic to one of

two amalgam X (i) = {G(i)
4 , G

(i)
3 }, i = 1 and 2, where G

(1)
3
∼= AutG34 and

G
(2)
3
∼= G34 × 2.

Proof. Since all subgroups in G4
∼= L4(2) isomorphic to 23 : L3(2)

are conjugate in AutG4 the type of X is determined by the isomorphism
type of G3. By (11.3.1) the type of X is that of X (1) or X (2). Since

AutG
(i)
3
∼= AutG34 for both i = 1 and 2 and the centre of G34 is trivial,

the type of X uniquely determines it up to isomorphism by (8.3.2). 2

Let us show first that the amalgam X (2) does not lead to a P -geometry.
Let F be the affine rank 4 geometry over GF (2), which is formed by the
cosets of the proper subspaces in a 4-dimensional GF (2)-space. The dia-
gram of F is

2
◦

2
◦

2
◦ c∗

1
◦

and A = AGL4(2) is the flag-transitive automorphism group of F . If Ai,
1 ≤ i ≤ 4, are the maximal parabolics associated with the action of A on
F , then it is easy to see that {A4, A3} is isomorphic to X (2). An element
of type 2 is incident to four elements of type 4 and its stabilizer A2 induces
Sym4 on these four points with kernel K+

2
∼= 24 : Sym3. Furthermore,

it is easy to check that the image of A2 in OutK+
2 is Sym3. Since A2 is

generated by A23 and A24, the image is determined solely by the structure
of {A4, A3}. Since no flag-transitive automorphism group of the Petersen
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graph possesses Sym3 as a homomorphic image, the amalgam X (2) indeed
does not lead to a P -geometry.

Thus X = {G4, G3} is isomorphic to to X (1). Consider the action of
G ∼= M23 on G = G(M23) and let Gi, 1 ≤ i ≤ 4, be the maximal parabolics
associated with this action. Then X = {G4, G3} is also isomorphic to X (1).

Let K
+

2 be the kernel of the action of G2 on res+

G
(x2) (where x2 is the

element of type 2 stabilized by G2). Then it is easy to deduce from the

structure of G2
∼= 24 : (3×Alt5).2 (compare p. 114 in [Iv99]) that K

+

2
∼= 24 :

3 and the image of G2 in OutK
+

2 is isomorphic to Sym5. Furthermore, an

element of order 3 in K
+

2 acts fixed-point freely on O2(K
+

2 ), which implies

that the centre of K
+

2 is trivial and we have the following.

Lemma 11.3.3 Let ψ be the natural homomorphism of the universal com-
pletion of X = {G4, G3} onto G and ψ2 be the restriction of ψ to

the subgroup G̃2 in the universal completion generated by the subgroups
G2i = NGi

(K+
2 ) for i = 3 and 4. Then kerψ2 = C

G̃2
(K+

2 ). 2

By the above lemma the amalgam {G2, G3, G4} is isomorphic to the
corresponding amalgam in G ∼= M23. Furthermore the subamalgam D =
{G1i | 2 ≤ i ≤ 4} is uniquely determined and hence G1 is either the
universal completion of D (isomorphic to 3·M22) or the M22-quotient of the
universal completion. In the latter case A = {Gi | 1 ≤ i ≤ 4} is isomorphic
to the amalgam of maximal parabolics in M23 while in the former case the
coset geometry of the universal completion of A is the universal 2-cover of
G(M23). By Proposition 3.6.5 in [Iv99] the geometry G(M23) is 2-simply
connected which gives the main result of the section.

Proposition 11.3.4 All the amalgams of M23-shape are isomorphic to
A(M23,G(M23)) (in particular G1

∼= M22) and and the universal comple-
tion of such an amalgam is M23. 2

11.4 Co2-shape

In this section G is a rank 4 P -geometry with the diagram

2
◦

2
◦

2
◦ P

1
◦

such that the residue of a point is isomorphic to either G(M22) or G(3 ·M22)
and

G1 ∼ 210.AutM22 or G1 ∼ 210.3 ·AutM22

with K1 = O2(G1) being the irreducible Golay code module C10 for
G1/O3(G1) ∼= AutM22 (where G1 = G1/K1 as usual.) We will assume
that G1

∼= AutM22, the arguments for the case when G1
∼= 3 ·AutM22 are

basically the same.
By Table VI in Section 8.2 the group H2(AutM22, C10) is non-trivial

(1-dimensional), so a priori G1 might or might not split over K1. At this
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stage we can only say is the following. Since H2(M22, C10) is trivial, the
commutator subgroup G′1 of G1 is the semidirect product of C10 and M22

with respect to the natural action. Since H1(M22, C10) is 1-dimensional,
G′1 contains exactly two classes of complements to K1. This shows that
O = OutG′1 is elementary abelian of order 4 generated by the images of
two automorphisms c and n, where c swaps the classes of complements and
commutes with G′1/K1

∼= M22, while n normalizes one of the complements
and induces on this complement an outer automorphism. Then the preim-
age in AutG′1 of the subgroup 〈cn〉 of O is the unique non-split extension
of C10 by AutM22. Thus G1 is isomorphic either to this extension or to
the semidirect product of C10 and AutM22 (the preimage in AutG′1 of the
subgroup 〈n〉). We will see in due course that the latter possibility holds.

We follow the direct strategy and reconstruct first the amalgam B =
{G1, G2}. The subgroup G12 is the preimage in G1 of the stabilizer S ∼=
25 : Sym5 in G1 of x2 (which is a point in resG(x1) ∼= G(M22).) It follows
from (4.2.6) that C10, as a module for S, possesses the submodule series

1 < K
(2)
1 < K

(1)
1 < K1,

where K
(2)
1 = CK1

(O2(S)) is the orthogonal module Vo of S/O2(S) ∼=
Sym5, K

(1)
1 = [K1, O2(S)] has codimension 1 in K1 and K

(1)
1 /K

(2)
1
∼= O2(S)

is the indecomposable extension of the natural module Vn of F by a trivial
1-dimensional module.

Recall that Vo is also the heart of the GF (2)-permutational module on
5 points. The orbits on the non-zero vectors in Vo have length 5 and 10 and
Vo is the universal representation group of the derived system of G(Alt5)
(cf. (3.9.4)). The action of Sym5 on the set of non-zero vectors in Vn is

transitive. By (2.8.2) and Table VI in Section 8.2 K
(1)
1 /K

(2)
1 is the largest

extension V un of Vn by trivial modules. We call V un the extended natural
module of Sym5. The extended natural module is the dual of the universal
representation module of G(Alt5) factored over the 1-dimensional trivial
Sym5-submodule (notice each of Vn and Vo is 4-dimensional and self-dual).
The following result is similar to (12.6.2), we also follow the notation of
(12.6.2).

Lemma 11.4.1 We have

G2 ∼ 24+8+2.(Sym5 × Sym3),

and furthermore

(i) K1 ∩K2 = K
(1)
1 has index 2 in K1;

(ii) K2 = O2(G2) and K2/L2 is the tensor product of the extended natu-
ral module of the Sym5-direct factor of G2 and of the 2-dimensional
module for the Sym3-direct factor;

(iii) L2 = ∩E∈EE and L2
∼= 24 is the orthogonal module for the Sym5-

direct factor of G2;



194 CHAPTER 11. AMALGAMS FOR P -GEOMETRIES

(vi) if E is an elementary abelian subgroup of order 29 in K2 which is
normal in K−2 then E ∈ E. 2

We know that at least G′1 splits over K1 and hence G′1∩G12 is a semidi-
rect product of K1 and a subgroup T ∼= 24 : Sym5, which maps isomorphi-

cally onto the stabilizer of x2 in G
′
1
∼= M22. Since T is a maximal parabolic

associated with the action of M22 on G(M22), we know that it splits over
O2(T ). Let B ∼= Sym5 be a complement to O2(T ) in T ,

C = 〈K1, B〉 and D = C ∩K−2 .

Since K1 induces on res−G (x2) an action of order 2 with kernel K
(1)
1 , we

observe that D is an extension (split or non-split) of K
(1)
1 by Sym5.

Lemma 11.4.2 As a module for D/O2(D) ∼= Sym5, K
(1)
1 possesses the

direct sum decomposition:

K
(1)
1 = L2 ⊕ V1,

where V1 maps isomorphically onto K
(1)
1 /K

(2)
1 .

Proof. The result can be checked either by direct calculation in C10 or
by noticing that L2 being the orthogonal module is projective. 2

Consider D̃ = D/V1 which is an extension by Sym5 of the orthogonal

module Vo ∼= L2. Since H2(Sym5, Vo) is trivial, D̃ contains a complement

F̃ ∼= Sym5 to O2(D̃).

Let F be the full preimage of F̃ in D, so that F is an extension of V1

(which is an elementary abelian subgroup of order 25) by Sym5. Notice
that by the construction we have

F < D < K−2 .

Lemma 11.4.3 Let t be a generator of a Sylow 3-subgroup of O2,3(G2).
Then

(i) F t ≤ G1 and F t ∩K1 = 1;

(ii) G1 splits over K1;

(iii) F splits over O2(F ).

Proof. Since F ≤ K−2 and K−2 is normal in G2, it is clear that F t ≤ G1.
Since t ∈ G2 \G12, t permutes transitively the three subgroups constituting
E . Hence by (11.4.1 (iii)) we have

(K
(1)
1 )t ∩K(1)

1 = L2

and since K
(1)
1 = L2 ⊕ V1, where V1 = O2(F ), (i) follows. The image of

F t in G1 contains a Sylow 2-subgroup of G1 and hence (ii) follows from (i)
and Gaschütz theorem. Finally, since F t maps onto a maximal parabolic
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associated with the action of G1
∼= AutM22 on G(M22), we know that it

splits over its O2, hence so does F . 2

Thus G1 is uniquely determined up to isomorphism and G12 is uniquely
determined up to conjugation in G1. The next lemma identifies K−2 as a
subgroup in G12 (recall that if P is a group, then P∞ is the smallest normal
subgroup in P such that P/P∞ is solvable.

Lemma 11.4.4 The following assertions hold:

(i) K−2 is a semidirect product of K2 and a subgroup X ∼= Sym5;

(ii) L2 is the unique elementary abelian normal subgroup in G12 which is
isomorphic to the orthogonal module for X;

(iii) O2(G∞12)/L2 is the direct sum of two copies of the natural module for
X and K2 = CG12

(O2(G∞12)/L2);

(iv) if Y = K2/O2(G∞12) then Y is elementary abelian of order 22 and
K−2 = CG12

(Y ).

Proof. (i) follows from (11.4.3 (iii)), the rest is an immediate conse-
quence of (11.4.1). 2

Our next objective is to calculate OutK−2 . Since the centre of K−2 is
trivial, G2 is the preimage in AutK−2 of a Sym3-subgroup in OutK−2 . We
start with the following.

Lemma 11.4.5 The group K−2 contains exactly four classes of comple-
ments to K2 = O2(K−2 ).

Proof. By (11.4.4 (i)) X is one of the complements. Let E = {Ei |
1 ≤ i ≤ 3} and E1 = K

(1)
1 = K1 ∩K2. Then by (11.4.2) Ei as a module

for X is the direct sum L2 ⊕ Vi, where L2 is the orthogonal module and
Vi is the extended natural module. It is easy to deduce from Table VI in
Section 8.2 that H1(Sym5, Vi) is one dimensional. Since H1(Sym5, L2) is
trivial, by (8.2.1) we see that the group EiX contains exactly two classes
of complements with representatives X0 = X and Xi, where 1 ≤ i ≤ 3.
We claim that for 0 ≤ i < j ≤ 3 the complements Xi and Xj are not
conjugate in K−2 . Let Xi(j) denote the image of Xi in K−2 /Ej . Clearly
X0(j) = Xj(j), but for k 6= j and 1 ≤ k ≤ 3 the image EkX in K−2 /Ej is
isomorphic to EkX/L2 and still contains two classes of complements, which
shows that X0(j) 6= Xk(j) and proves the claim. In order to get an upper
bound on the number of complements consider the normal series

L2 < E1 < K2.

Since L2 is the orthogonal module while both E1/L2 and K2/E1 are iso-
morphic to the extended natural module V1. We have seen already that all
complements in L2X are conjugate while V1X contains two classes of com-
plements. Hence altogether there are at most four classes of complements.
2
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Lemma 11.4.6 The action of OutK−2 on the set of four classes of com-
plements to K2 is faithful, in particular, OutK−2 ≤ Sym4.

Proof. Suppose that τ ∈ AutK−2 stabilizes every class of complements
as a whole. Then, adjusting τ by a suitable inner automorphism we can
assume that τ normalizes X0

∼= Sym5 and since the latter group is com-
plete, we can further assume that τ centralizes X0. Consider the quotient
J = K−2 /O2(G∞12) ∼= 22 × Sym5. Then the set of images in J of the com-
plements Xi for 0 ≤ i ≤ 3 forms the set of all Sym5-subgroups in J , which
shows that τ centralizes J . On the other hand, the images of the subgroups
from E form the set of subgroups of order 2 in the centre of J . Hence τ nor-
malizes every Ei ∈ E . The action of τ on Ei must commute with the action
of X on Ei. We know that Ei, as a module for X is isomorphic to the direct
sum of the orthogonal and the extended natural modules. Since these two
modules do not have common composition factors, it is easy to conclude
that τ must centralize Ei which shows that τ is the identity automorphism.
2

Lemma 11.4.7 Let Ĝ1 be the semidirect product with respect to the nat-
ural action of the irreducible Golay code module C11 for M24 and AutM22

(considered as a subgroup in M24). Then

(i) Ĝ1 contains G1 with index 2;

(ii) C
Ĝ1

(K−2 ) is trivial;

(iii) the image of N
Ĝ1

(K−2 ) in OutK−2 has order 4.

Proof. (i) is immediate from (11.4.3 (ii)). It is easy to see that AutM22

has three orbits on C11 \ C10 with length 352, 616, 672 and with stabilizers
Alt7, AutSym6 and PGL(2, 11), respectively. This shows that K−2 /(K2 ∩
K1) ∼= 25 : Sym5 acts fixed-point freely on C11 \ C10, which implies (ii),
since we already know that the centre of K−2 is trivial. It is clear that K−2
has index 4 in its normaliser in Ĝ1, so (ii) gives (iii). 2

Lemma 11.4.8 OutK−2
∼= Sym4.

Proof. By (11.4.6) all we have to do is it present sufficiently many
automorphisms. Since K−2 is isomorphic to the corresponding subgroup
associated with the action of Co2 on G(Co2), we know that OutK−2 contains
Sym3. By (11.4.7) it also contains a subgroup of order 4, hence the result.
2

Proposition 11.4.9 The amalgam B = {G1, G2} is uniquely determined
up to isomorphism.

Proof. Since all Sym3-subgroup in Sym4 are conjugate, by (11.4.3
(ii)), (11.4.4 (iv)) and (11.4.8) the type of B is uniquely determined and it
only remains to apply Goldschmidt’s lemma. Since the centraliser of K−2
in G12 is trivial, it is easy to see that AutG12 coincides with the normaliser
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of G12 in AutK−2 . So OutG12 has order 2. On the other hand, by (11.4.7
(iii)) the image of NAutG1

(G12) in OutG12 is also of order 2. Hence the
type of B determines B up to isomorphism. 2

Now (8.6.1) applies and gives the following.

Proposition 11.4.10 An amalgam A of Co2-shape is isomorphic to either

A(Co2,G(Co2)) or A(323 · Co2,G(323 · Co2))

and the universal completion of A is isomorphic to either Co2 or 323 ·Co2,
respectively. 2

11.5 J4-shape

In this section G is a P -geometry of rank 4 with the diagram

2
◦

2
◦

2
◦ P

1
◦,

the residue of a point is isomorphic to G(3 ·M22),

G1 ∼ 2.212.3 ·AutM22, G4 ∼ 24.24.26.L4(2),

where L1 is of order 2 and K1/L1 is the universal representation module of
the extended system of G(3 ·M22). We start with the following.

Lemma 11.5.1 K1 = O2(G1) is extraspecial of plus type, so that G1 ∼
21+12

+ .3 ·AutM22.

Proof. Since L1 is of order 2 and K1/L1 is isomorphic to the universal
representation module of the extended system of G(3 ·M22) on which G1

∼=
3 · AutM22 acts irreducibly, preserving a unique quadratic form of plus
type, all we have to show is that K1 is non-abelian.

We consider the action of G on the derived graph ∆ of G and follow
the notation in Chapter 9. The subgroup K1 is the vertex-wise stabilizer
of the subgraph Σ = Σ[x1] induced by the vertices (the elements of type 4)
incident to x1. Since K1/L1 is non-trivial, K1 acts non-trivially on ∆(x4),
which means that its image in H/H1

∼= L4(2) is non-trivial. On the other
hand, H3

∼= 24 fixes every vertex whose distance from x4 is at most 3 and
since the action of G1

∼= 3 ·M22 on Σ satisfies the (∗3)-condition, H3 fixes
Σ vertex-wise and hence H3 ≤ K1. Since H/H1 acts faithfully on H3, K1

is non-abelian. 2

Clearly G12 is the full preimage in G1 of the stabilizer G12/K1
∼= 25 :

Sym5 of x2 in G1
∼= 3 ·AutM22. By (4.4.8) we know that (as a module for

G12/K1) K1/L1 possesses a unique composition series V (1) < ... < V (5) <

K1/L1. For 1 ≤ i ≤ 5 let K
(i)
1 denote the full preimage of V (i) in K1.

Lemma 11.5.2 We have

G2 ∼ 22+1+4+8+2.(Sym5 × Sym3),

furthermore, if {x1, y1, z1} is the set of points incident to x2, then
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(i) K
(5)
1 = K1 ∩K2 has index 2 in K1;

(ii) K(3) = L2 and K2/L2 is the tensor product of the extended natu-
ral module of K−2 /K2

∼= Sym5 and the 2-dimensional module for
K+

2 /K2
∼= Sym3;

(iii) L2 is a maximal abelian subgroup in K1 (of order 27);

(iv) V := K(2) is elementary abelian of order 23 normal in G2;

(v) K(1) = 〈L(x1), L(y1), L(z1)〉 is a normal subgroup of order 4 in G2

and L2/K
(1) is the dual of the extended natural module of K−2 /K2

centralized by K+
2 /K2

∼= Sym3.

Proof. Everything follows from (4.4.8). Notice that V is the largest
subgroup in K2 inside which all the chief factors of G12 are trivial. 2

As an immediate consequence of (11.5.2 (v)) we obtain the following.

Lemma 11.5.3 Let ϕ be the mapping of the point-set of G into G which
sends y onto the unique involution in L(y). Then (G,ϕ) is a G-admissible
representation of G. 2

The subgroup G12 is not maximal in G1, since it is properly contained
in Ĝ12 = 〈G12, X〉, where X is a Sylow 3-subgroup of O2,3(G1), so that

Ĝ12 = G12O2,3(G1).

Lemma 11.5.4 V is normal in Ĝ12.

Proof. The image X of X in G1 coincides with O3(G1). By (4.4.8) X
normalizes V (2) which means that X normalizes V . 2

By (11.5.2 (iv)) and (11.5.4) V is normal in both G2 and Ĝ12. Further-
more

G12 = G2 ∩ Ĝ12 and [G2 : G12] = [Ĝ12 : G12] = 3.

Lemma 11.5.5 Let C = CG12
(V ), Q = O2(C), A = AutV ∼= L3(2), A1

and A2 be the images in A of Ĝ12 and G2, respectively. Then

(i) {A1, A2} is the amalgam of maximal parabolics in A, so that A1 is
the stabilizer of the 1-subspace L1 and A2 is the stabilizer of the 2-
subspace K(1) in V ;

(ii) Q is the normal closure of K(4) in G2 of order 215 and C/Q ∼= Sym5;

(iii) C is the largest subgroup in G12 normal in both G2 and Ĝ12 and

C ∼ 21+1+1+4+4+4.Sym5.
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Proof. Since K1 is extraspecial by (11.5.1), it induces on V the group
of all transvections with centre L1. Since X acts on V non-trivially and X
is fully normalized in Ĝ12 it is clear that Ĝ12 induces on V the full stabilizer
of L1 in A. Thus G12 induces the Borel subgroup D8. Since G2 induces
Sym3 on K(1), (iii) follows. By the above K2 induces on V an action of
order 4, and hence (ii) follows from (11.5.2). The amalgam {A1, A2} is
simple and it is clear that

CG2(V ) ≤ G12 and C
Ĝ12

(V ) ≤ G12,

hence (i) follows. 2

By (11.5.5) we observe that

Ĝ12 ∼ 21+2+8+4.(Sym5 × Sym4), G2 ∼ 22+1+4+8.(Sym5 × Sym4).

Now we are going to make use of the T -subgeometries in G. From
Lemma 7.1.7 in [Iv99] and the paragraph before that lemma we can deduce
the following.

Proposition 11.5.6 The geometry G under consideration contains a fam-
ily of T -subgeometries of rank 3, such that

(i) the element x3 is contained in a unique subgeometry S from the family
and res−S (x3) = res−G (x3);

(ii) the stabilizer S of S in G acts on S flag-transitively;

(iii) the residue resS(x1) belongs to the family of G(3·S4(2))-subgeometries
in resG(x1) ∼= G(3 ·M22). 2

By (11.5.6) {x1, x2, x3} is a maximal flag in S and {Si = S(xi) | 1 ≤
i ≤ 3} is the amalgam of maximal parabolics associated with the action of
S on S (we will see below that the action is not faithful).

Lemma 11.5.7 The following assertions hold:

(i) S3 = G3 ∼ [218].L3(2);

(ii) S1 ∼ 21+6+6.3.24.Sym6.

Proof. (i) follows from (11.5.6 (i)) while (ii) follows from (11.5.6 (iii)).
2

Lemma 11.5.8 Let KS be the kernel of the action of S on S and S =
S/KS. Then KS is of order 211 and S ∼= G(M24) or S ∼= G(He).

Proof. By the classification of the rank 3 T -geometries S is isomorphic
to

G(M24), G(He) or G(37 · S6(2)).

Suppose that S is isomorphic to the latter of the geometries and S ∼=
37 · S6(2) (the only flag-transitive automorphism group of G(37 · S6(2))).
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Then S1/KS
∼= 3 · 24.Sym6 and it is easy to deduce from (11.5.7) that if

X is a Sylow 3-subgroup of O2,3(S1) then X acts faithfully on KS . By
considering the action of S6(2) on the set of hyperplanes of 37 it is easy to
see that the smallest faithful GF (2)-representation of S has dimension 56.
2

Thus KS is of order 211, S1/KS
∼= 26 : 3 · Sym6 and hence (compare

(11.5.7 (ii))) L1 = L(x1) is contained in KS . Let ϕS be the restriction
to S of the mapping as in (11.5.3). Then ImϕS ≤ KS and (ImϕS , ϕS)
is an S-admissible presentation of S. Clearly a quotient of ImϕS over its
commutator subgroup supports a non-trivial abelian representation of S.
By (4.6.1) every He-admissible representation of G(He) has dimension at
least 51 and by (4.3.1) the only M24-admissible representation of G(M24) is
supported by the 11-dimensional Todd module, so we have the following.

Proposition 11.5.9 The following assertions hold:

(i) S ∼= G(M24);

(ii) S ∼= M24;

(iii) KS
∼= C11 (the irreducible Todd module). 2

Now we are in a position to identify the subgroup T = 〈Ĝ12, G2〉.

Lemma 11.5.10 Let V be as in (11.5.2(iv)). Then

(i) NS(V ) contains KS and NS(V )/KS
∼= 26 : (Sym3 × L3(2)) is the

stabilizer of a trio in S ∼= M24;

(ii) Ĝ12 = (Ĝ12 ∩ S)C and G2 = (G2 ∩ S)C;

(iii) T ∼= 23+12.(Sym5 × L3(2)).

(iv) let ψ : T → T = T/C ∼= L3(2) be the natural homomorphism and τ
be an involution from T , then ψ−1(τ) contains an involution.

Proof. It is easy to notice that V is contained in KS so that (i) follows
from the basic properties of the irreducible Todd module KS

∼= C11. Since
NS(V ) induces L3(2) on V , each of Ĝ12 ∩ S and G2 ∩ S induces Sym4, so
(ii) follows from (11.5.5 (iii)). Finally (iii) is by (ii) and (11.5.5 (iii)).

In order to prove (iv), notice that K1∩C is the orthogonal complement
to V with respect to the bilinear form induced by the commutator map on
K1. Hence ψ(K1) is an elementary abelian subgroup of order 22. Since all
involutions in T are conjugate, we can assume that τ ∈ ψ(K1). Since K1 is
extraspecial, it is easy to see (compare (4.4.7)) that there is an involution
in K1 \ (K1 ∩ C). 2

Let us take a closer look at the subgroup S1 = G1∩S as in (11.5.7 (ii)).
On the one hand, K1 ≤ S1 and S1/K1

∼= 24 : 3 · Sym6 is the stabilizer in
G1
∼= 3 · AutM22 of a G(3 · S4(2))-subgeometry in resG(x1) ∼= G(3 ·M22).

On the other hand, KS ≤ S1 and S1/KS
∼= 26 : 3 · Sym6 is the stabilizer

in S ∼= M24 of x1 considered as a point of S.
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Lemma 11.5.11 The following assertions hold, where X is a Sylow 3-
subgroup of O2,3(S1):

(i) if A = NS1(X) ∼ [25].3 · Sym6, then O2(A) is the indecomposable
extension of a 1-dimensional module by the natural symplectic module
of A/O2,3(A) ∼= Sym6

∼= S4(2);

(ii) if B = NG1
(X) ∼ 2.3 ·AutM22, then B′ has index 2 in B, so B does

not split over L1 = O2(B);

(iii) B′ ∼= 6 ·M22 is the unique covering group of M22 with centre of order
6;

(iv) G1 splits over G′1;

(v) G1 is isomorphic to the point-stabilizer of J4 acting on G(J4);

(vi) A splits over O2(A);

(vii) S splits over KS = O2(S).

(viii) S is isomorphic to the stabilizer in J4 of a G(M24)-subgeometry in
G(J4).

Proof. Since O2(A) ≤ KS , (i) follows from Lemma 3.8.5 in [Iv99].
Since O2(A) ≤ G′1 (ii) follows from (i). The Schur multiplier of M22 is
cyclic of order 12 [Maz79], and since G1 does not split over its O3, (iii)
follows from (ii). In order to prove (iv) we need to show that G1 \ G′1
contains an involution. We follow notation as in (11.5.10 (iv)). By (11.5.5
(ii)) the images of (G1 ∩T ) and (G′1 ∩T ) in T are isomorphic to Sym4 and
Alt4, respectively. Hence the existence of the involution in G1 \G′1 follows
from (11.5.10 (iv)). Since G1/L1

∼= 212 : 3 · AutM22 is the semidirect
product of the universal representation module of the extended system of
G(3·M22) and the automorphism group of this geometry, G1/L1 is uniquely
determined up to isomorphism. Hence (v) follows from (iii) and (iv). Since
A is contained in G1, (v) implies (vi).

Let us prove (vii). Let D1 be the G(3 · S4(2))-subgeometry in resG(x1)
such that S1 is the stabilizer of D1 in G1. Then D1 is the set of elements in
resG(x1) fixed by O2(S1)/K1

∼= 24, in particular D1 is uniquely determined.
Let ϕ be the map from the point-set of resG(x1) which turns K1/L1 into the
representation module of the geometry. Then KS ∩K1 (of order 27) is the
preimage in K1 of ϕ(D1). Furthermore, KS∩K1 is the centralizer of O2(A)
in K1. Let U1 = [X,KS ∩K1]. Then U1 is a complement to L1 in KS ∩K1

and it is a hexacode module for a complement F ∼= 3 · Sym6 to O2(A)
in A which exists by (vi). Let D2 be another G(3 · S4(2))-subgeometry in
resG(x1) such that the hexads in the Steiner system S(3, 6, 22) (cf. Lemmas
3.4.4 and 3.5.8 in [Iv99]) corresponding to D1 and D2 are disjoint. Then
the joint stabilizer F of D1 and D2 in G1 is a complement to O2(S1)/K1

in S1/K1
∼= 24 : 3 · Sym6. Without loss of generality we can assume that

F = FK1/K1 where F is the complement to O2(A) in A as above. Then
F normalizes the subgroup U2 in K1 defined for D2 in the same way as
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U1 was defined for D1. Since F acts irreducibly on U1 and U1 6= U2 (since
D1 6= D2) we have U1 ∩U2 = 1. Now U2F ∼= 26 : 3 · Sym6 is a complement
to KS in S1. Since S1 contains a Sylow 2-subgroup of S Gaschütz theorem
(8.2.8) gives (vii). Finally (viii) is immediate from (vii) and (11.5.9 (ii),
(iii)). 2

By (11.5.11) and the paragraph before that lemma the type of the amal-
gam E = {G1, S} is uniquely determined. Now we are going to identify it
up to isomorphism.

Lemma 11.5.12 (i) OutS1 is of order 2;

(ii) E = {G1, S} is isomorphic to the analogous amalgam in J4.

Proof. We follow the notation introduced in (11.5.11), so that F ∼=
3 · Sym6 is a complement to O2(S1). Since O2(S1) possesses the following
chief series:

1 ≤ L1 ≤ O2(A) ≤ O2(A)U1 ≤ O2(A)U1U2 = O2(S1),

the chief factors of F inside O2(S1) are known. Since H1(F,Ui) is trivial
for i = 1, 2 while H1(F,O2(A)) is 1-dimensional (remember that O2(A) is
indecomposable) we conclude that there are two classes of complements to
O2(S1) in S1. Hence in order to prove (i) it is sufficient to show that every
automorphism σ of S1 which normalizes F is inner. Since O2(S1) does not
involve the module dual to U1, σ induces an inner automorphism of F and
hence we can assume that σ centralizes F . Notice that

KS = CS1
(O2(A)), where A = NS1

(O3(F )),

and hence σ normalizes KS and commutes with the action of F on KS .
Since KS = O2(A)⊕ U1 (as a module for F ), it is easy to see that σ must
centralize KS . Similarly σ must centralize the complement U2 to KS in
O2(S1). Thus (i) is proved. In order to prove (ii) we apply Goldschmidt’s
lemma (8.3.2). Since H1(M24, C11) is non-trivial (cf. Table VI in Sec-
tion 8.2), S possesses an outer automorphism. In fact it is easy to see that
AutS ∼= C12 : M24 and the centralizer of S1 in AutS is trivial. Hence E is
uniquely determined up to isomorphism and (ii) follows. 2

Lemma 11.5.13 The amalgam F = {G1, S, T} is uniquely determined up
to isomorphism.

Proof. By (11.5.12) E = {G1, S} is uniquely determined. Hence all
we have to show is that the kernel KT of the homomorphism onto T of
the universal completion UT of the amalgam {T1, TS} is uniquely specified,
where

T1 = T ∩G1
∼= 23+12.(Sym5 × Sym4),

TS = T ∩ S ∼= 23+12.(Sym3 × 2× L3(2)).

Clearly Q = O2(T ) is contained and normal in both T1 and TS . Hence KT is
a complement to V = Z(Q) in the centralizer of Q in UT . In order to apply
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(8.4.3) all we have to show is that 23 : (Sym5 × L3(2)) is not a completion
of the amalgam {T1/Q, TS/Q} = {Sym5 × Sym4, Sym3 × 2× L3(2)}, but
this is quite obvious. 2

Proposition 11.5.14 All the amalgams of J4-shape are isomorphic to
A(J4,G(J4)) and the universal completion of such an amalgam is isomor-
phic to J4.

Proof. Since G2 ≤ T and G3 ≤ S, the amalgam {G1, G2, G3} is
contained in F and hence it is uniquely determined by (11.5.13). Hence
the uniqueness of the amalgam follows by the standard remark that resG(x4)
is simply connected. The geometry G(J4) is simply connected as has been
proved in [Iv92b], [ASeg91], [IMe99] which implies the conclusion about the
universal completion. 2

11.6 Truncated J4-shape

In this section G is a rank 5 P -geometry with the diagram

2
◦

2
◦

2
◦

2
◦ P

1
◦,

such that resG(x1) ∼= G(J4), G1
∼= J4, and G5

∼= 210.L5(2).

We will show that such a geometry does not exist by considering pos-
sible T -subgeometries. By Lemma 7.1.7 in [Iv99] (compare (11.5.6)) x4

is contained in a unique subgeometry S which is a T -geometry of rank 4.
Since G4 ∼ [216].L4(2) and the rank 3 T -subgeometry in resG(x1) ∼= G(J4)
is G(M24), the classification of the flag-transitive T -geometries of rank 4
shows that S ∼= G(Co1) and S (the stabilizer of S in G) is Co1.

Now consider the stabilizer S1 of x1 in S. Since S ∼= Co1 we have S1
∼=

211.M24 and O2(S1) is the irreducible Golay code module C11 (compare
Section 12.6). On the other hand, S1 is the stabilizer in G1

∼= J4 of a
G(M24)-subgeometry from G(J4), so S1

∼= 211.M24, but from this point of
view O2(S1) must be the irreducible Todd module C11 by (11.5.9) . This is
a contradiction and hence we have proved the following.

Proposition 11.6.1 There is no P -geometry G of rank 5 possessing a flag-
transitive automorphism group G such that A(G,G) is of truncated J4-shape
(that is with point stabilizer isomorphic to J4). 2

Notice that J = J4 itself contains a subgroup L = 210 : L5(2). The
action of J on the cosets of L preserves a graph Ξ of valency 31 which is
locally projective. There is a family of Petersen subgraphs and a family of
subgraphs isomorphic to the derived graph of G(M22), which are geomet-
rical subgraphs of valency 3 and 7, respectively, but there is no family of
geometrical subgraphs of valency 15. So this graph gives only a truncated
version of P -geometry.
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11.7 BM-shape

In this section G is a rank 5 P -geometry with the diagram

2
◦

2
◦

2
◦

2
◦ P

1
◦,

the residue resG(x1) is isomorphic to G(Co2) or G(323 ·Co2) and G1
∼= Co2

or 323 · Co2, respectively; furthermore L1 is of order 2 and K1/L1 is the
22-dimensional representation module of resG(x1) isomorphic to the Co2-

section Λ
(22)

of the Leech lattice taken modulo 2. Since the arguments for
the two cases are basically identical, we assume that resG(x1) ∼= G(Co2)
and G1

∼= Co2.
Let B = {Bi | 1 ≤ i ≤ 5} = A(BM,G(BM)) be the amalgam of

maximal parabolics associated with the action of the Baby Monster group
BM on its P -geometry, so that

B1 ∼ 21+22
+ .Co2 and B2 ∼ 22+10+20.(Sym3 ×AutM22).

We will show in this section that every amalgam of BM -shape with G1
∼=

Co2 is isomorphic to B.
We will make use of the following relationship between B and the Mon-

ster amalgam (cf. Section 5.4 in [Iv99]). Let M = {Ci | 1 ≤ i ≤ 5} be the
amalgam of maximal parabolics associated with the action of the Monster
group M on its T -geometry, so that

C1 ∼ 21+24
+ .Co1 and C2 ∼ 22+11+22.(Sym3 ×M24).

Then there is a subgroup Y1 of order 2 in O2(C1) such that {CCi
(Y1) |

1 ≤ i ≤ 5} is the amalgam of maximal parabolics associated with the
(unfaithful) action of 2 ·BM ∼= CM (Y1) on G(BM) and hence

B ∼= {CCi
(Y1)/Y1 | 1 ≤ i ≤ 5}.

We start with the following

Lemma 11.7.1 The group K1 is extraspecial of plus type, so that G1 ∼
21+22

+ .Co2.

Proof. Arguing as in the proof of (2.3.5) it is easy to show that K1 is

non-abelian. Since Co2 acts irreducibly on K1/L1
∼= Λ

(22)
and |L1| = 2, we

have that K1 is extraspecial. Since the action of Co2 on Λ
(22)

is absolutely
irreducible (8.2.9), it preserves a unique non-zero quadratic form which is
of plus type. 2

We proceed by discussion of the possible isomorphism types of G1. Put
G̃1 = G1/L1 and apply the tilde convention for subgroups in G1, so that

K̃1 = O2(G̃1) is isomorphic to Λ
(22)

.

Lemma 11.7.2 G̃1 ∼ 222.Co2 is determined uniquely up to isomorphism.
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Proof. Since L1 is the centre of G1, G̃1 is the image of G1 in A :=
AutK1

∼= 222.O+
22(2). Since Co2 preserves a unique non-zero quadratic form

on Λ
(22)

, O+
22(2) contains a unique conjugacy class of subgroups isomorphic

to Co2 and hence G̃1 is uniquely specified as the full preimage of such a
subgroup with respect to the homomorphism A→ A/O2(A). 2

Since G̃1
∼= B1/Z(B1) by (5.4.3) we know that G̃1 does not split over

K̃1 (but we will not use this fact). Since G1 is a perfect central extension

of G̃1 the next logical step is to look at the Schur multiplier of G̃1.

Lemma 11.7.3 The Schur multiplier of G̃1 is elementary abelian of order
four.

Proof. First we show that the Schur multiplier of G̃1 has order at
least 4. Let D ∼= 21+24

+ .Co2 be the preimage of a Co2-subgroup in Co1 with
respect to the homomorphism C1 → C1/O2(C1) ∼= Co1.

We know that Λ
(24)

(the Leech lattice modulo two) considered as a
module for Co2, is uniserial with the composition series

〈λ〉 < Λ
(23)

< Λ
(24)

,

where λ is the unique non-zero vector in Λ
(24)

, stabilized by Co2, Λ
(23)

is

the orthogonal complement of 〈λ〉 and Λ
(22)

= Λ
(23)

/〈λ〉. This shows that
the commutator subgroup D′ of D has index 2 in D, it is perfect and the
center of D′ is of order four.

Now we establish an upper bound on the Schur multiplier of G̃1. Let
Ĝ1 be the largest perfect central extension of G̃1, Ẑ be the center of Ĝ1.
We apply the hat convention for subgroups in G̃1. The commutation map
on K̂1 defines a bilinear map

χ : K̃1 × K̃1 → Ẑ.

Since the Co2-module K̃1
∼= Λ

(22)
is absolutely irreducible (8.2.9), the image

of the commutator map is of order at most two. Hence Ẑ1 := [K̂1, K̂1] is of

order at most 2. On the other hand, K̂1/Ẑ1 is abelian and it is rather easy

to see that in fact it must be an elementary abelian 2-group, and since Ĝ1

is perfect it must be indecomposable as a module for Ĝ1/K̂1
∼= Co2. Since

H1(Co2,Λ
(22)

) is 1-dimensional by (8.2.7 (ii)), the dimension of K̂1/Ẑ1 is

at most 23. Finally Ĝ1/K̂1 is a perfect central extension of Co2. Since the
Schur multiplier of Co2 is trivial by [Gri74], the result follows. 2

As a direct consequence of the proof of (11.7.3) we have the following

Corollary 11.7.4 The universal perfect central extension Ĝ1 of G1 is de-
termined uniquely up to isomorphism and it is a subgroup in C1. 2

Notice that Ĝ1 is also contained in the other 2-constrained group of the
form 21+24

+ .Co1 which is not isomorphic to C1.
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In terms of the proof of (11.7.3) let Ẑ1, Ẑ2 and Ẑ3 be the three subgroups

of order two from Ẑ. Then both Ĝ1/Ẑ2 and Ĝ1/Ẑ3 have extraspecial normal
subgroups, and they are the only candidates for the isomorphism type ofG1.
The difference between these two candidates is quite delicate, therefore we
will simply show that only one variant will work, without specifying which
one. In terms the relationship between B andM the subgroup Y1 is either
Z2 or Z3.

As usual G12 is the preimage in G1 of the stabilizer S in G1
∼= Co2 of

the point x2 of resG(x1) ∼= G(Co2), where S ∼= 210 : AutM22. We know that
O2(S) is the irreducible Golay code module C10 for S/O2(S) ∼= AutM22.

By (5.2.3) Λ
(22)

, as a module for S, is uniserial with the composition series

V (1) < V (2) < V (3) < Λ
(22)

,

where V (1) and Λ
(22)

/V (3) are 1-dimensional, V (2) is a maximal isotropic
subspace with respect to the invariant quadratic form θ, V (2)/V (1) ∼= C10

and V (3)/V (2) ∼= C10 (as modules for S/O2(S) ∼= AutM22). So

G12 ∼ 21+1+10+10+1+10.AutM22.

Let K
(i)
1 be the full preimage of V (i) in K1. Then we have the following.

Lemma 11.7.5 We have

G2 ∼ 22+10+20.(AutM22 × Sym3),

Furthermore, if {x1, y1, z1} is the set of points incident to x2, then

(i) K
(3)
1 = K1 ∩K2 has index 2 in K1;

(ii) K
(2)
1 = L2 and K2/L2 is the tensor product of the 10-dimensional

Golay code module C10 for K−2 /K2
∼= AutM22 and the 2-dimensional

module for K+
2 /K2

∼= Sym3;

(iii) L2 is a maximal abelian subgroup of K1 (of order 212);

(iv) K
(1)
1 = 〈L(x1), L(y1), L(z1)〉 is a normal subgroup of order 4 in G2

and L2/K
(1)
1 is the 10-dimensional Todd module C10. 2

Put G∗2 = G∞2 /Z(G∞2 ). Then G∗2 = O2(G12)/Z(O2(G12)),

G∗2 ∼ 210+10+10.M22,

inside O2(G∗2) there are exactly three chief factors of G∗2, one of them is
isomorphic to C10 and contained in Z(O2(G∗2)) and two others are iso-
morphic to C10 (as modules for G∗2/O2(G∗2) ∼= M22.) Notice that the iso-
morphism type of G∗2 is independent on that of G1. Indeed, the isomor-
phism type of G1 is specified by the choice between Z2 and Z3 and both
these subgroup are contained in Z(G∞2 ) and are factored out. In particular
G∗2
∼= B∗2 := B∞2 /Z(B∞2 ).
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Lemma 11.7.6 OutG∗2
∼= Sym4 × 2.

Proof. First we show that G∗2 possesses a group of outer automor-
phisms isomorphic to Sym4 × 2 and after that by estimating the order of
OutG∗2 we show that it can not be larger. Notice first that already in G2

we can see a (Sym3× 2)-subgroup of outer automorphisms of G∗2. In order
to see more automorphisms consider the full preimage F of an AutM22-
subgroup in the factor group of C2, isomorphic to M24, so that

F ∼ 22+1+10+2·(10+1).(Sym3 ×AutM22).

If R is the largest normal subgroup in F which only contains trivial chief
factors of F∞, then it is easy to see that R is elementary abelian of order
23 and F ∗ := F/R contains B∗2

∼= G∗2 as a normal subgroup. Furthermore,
CF∗(B

∗
2) = 1 and F ∗/B∗2

∼= Sym4 × 2. So we have seen all the required
automorphisms.

Now let us estimate the order of OutG∗2. First of all by (11.7.5 (ii))
O2(G∗2) contains exactly three normal elementary abelian subgroups of or-
der 220. Let E be the set of these subgroups. Clearly OutG∗2 induces Sym3

on E (we can see this already in G2). Let us consider the kernel of the ac-
tion. Observe that since both H2(M22, C10) and H2(M22, C10) are trivial,
G∗2 splits over O2(G∗2). Let J ∼= M22 be a complement. If an automorphism
of G∗2 centralizes J then it commutes with the action of J on O2(G∗2). Since
both C10 and C10 are absolutely irreducible, such an automorphism is trivial.
Now the outer automorphism of J is of order 2. Finally since H1(M22, C10)
is trivial and H1(M22, C10) is 1-dimensional (and there are two chief factors
isomorphic to C10) there are at most 4 classes of complements. Summarising
we conclude that

|OutG∗2| ≤ |Sym3| · 2 · 4

and the result follows. 2

Notice that by (11.7.6) the image ofG2 in OutG∗2 (isomorphic to Sym3×
2) is uniquely determined up to conjugation as the normaliser of a Sylow
3-subgroup.

Now let us turn back to the question about the isomorphism type of
G1. Recall that Ĝ1 is the universal perfect central extension of G1 which
is determined uniquely up to isomorphism and which is a subgroup of C1.
Let Ĝ12 be the full preimage of G12 in Ĝ1.

Lemma 11.7.7 For exactly one i ∈ {2, 3} an automorphism of G∗2 of order

3 can be extended to an automorphism of O2(Ĝ12/Zi) and G1 = Ĝ1/Zi.

Proof. Since Ĝ12 is determined uniquely up to isomorphism, it is
contained in the subgroup F as in the proof of (11.7.6). It is easy to see

that O2(Ĝ12) = F∞ and the subgroup R of F is the full preimage in Ĝ12 of

the subgroup K
(1)
1 as in (11.7.5). Let X be a Sylow 3-subgroup of O2,3(F ).

Since X normalizes R, which is elementary abelian of order 23 and acts

fixed-point freely on K
(1)
1 it centralizes a unique subgroup of order 2 in R.

This is the subgroup Zi with the required properties. 2



208 CHAPTER 11. AMALGAMS FOR P -GEOMETRIES

Thus G1 is determined uniquely up to isomorphism. Using (11.7.6) it is
easy to show that so is the rank 2 amalgam {G1, G2}. Thus (8.6.1) applies
and we obtain the final result of the section.

Proposition 11.7.8 An amalgam A of BM -shape is isomorphic to either

A(BM,G(BM)) or A(34371 ·BM,G(34371 ·BM))

and the universal completion of A is BM or 34371 ·BM , respectively. 2



Chapter 12

Amalgams for
T -geometries

In this chapter we consider the amalgams of maximal parabolics of flag-
transitive actions on T -geometries with shapes given in Table VIII b. It is
an elementary exercise to show that up to isomorphism there is a unique
amalgam of Alt7-shape and we know (cf. Section 6.11 in [Iv99]) that it does
not possess a faithful completion. In Section 12.2 we show that there is a
unique isomorphism type of amalgams of S6(2)-shape and in Section 12.3
that there are two types of M24-shape. In Section 12.4 we show that there
is a unique amalgam Af of truncated M24-shape and in Section 12.5 that
the universal completion of Af is isomorphic to M24 and it is not faithful.
In Section 12.6 we show there is a unique amalgam of Co1-shape while
in Section 12.7 we formulate the characterization of the Monster amalgam
achieved in Section 5.13 of [Iv99]. In the final section of the chapter we
classify the amalgams of symplectic shape with rank n ≥ 4 (the classifica-
tion was originally proved in [ShSt94]). Thus we have three amalgams for
rank 3, two for ranks 4 and 5 and only one (of symplectic shape) for rank
n ≥ 6. These numbers coincide with the numbers of amalgams coming from
the known examples in Table II, which proves Theorem 3 for T -geometries
and by Proposition 4 and Theorem 2 completes the proof of Theorem 1 for
T -geometries.

12.1 Alt7-shape

Let G be a T -geometry of rank 3 with the diagram

2
◦

2
◦ ∼

2
◦,

G be a flag-transitive automorphism group of G, such that G1
∼= 3 · Alt6,

G3
∼= L3(2). It is an easy exercise to check that in this case G2 must be

isomorphic to (Sym3 × Sym4)e (the stabilizer of a 3-element subsets in
Alt7). Then by Lemma 6.11.3 in [Iv99] the amalgam As = {G1, G2, G3}

209
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is determined uniquely up to isomorphism. Let (U(As, ϕ) be the universal
completion ofAs. The computer calculations performed with the generators
and relations for U(As) given in Section 6.11 in [Iv99] show the following
lemma.

Proposition 12.1.1 The following assertions hold:

(i) U(As) ∼= Alt7;

(ii) the restriction of ϕ to G1 has kernel of order 3.

In particular there exist no pairs (G, G) such that the amalgam A(G,G)
is of Alt7-shape, (this means that G is a rank 3 T -geometry and G is a
flag-transitive automorphism group of G with G1

∼= 3 ·Alt6, G3
∼= L3(2)).2

12.2 S6(2)-shape

In this section G is a T -geometry of rank 3 with the diagram

2
◦

2
◦ ∼

2
◦,

where G1 ∼ 25.3 · Sym6, G3 ∼ 23+3.L3(2), and

(a) N1 = 1 and L1 = Z(G1) is of order 2;

(b) K1 = O2(G1) and K1/L1 is the 4-dimensional symplectic module for
G1/O2,3(G1) ∼= S4(2);

(c) L3 is the natural module for G3 = G3/K3
∼= L3(2) and K3/L3 is the

dual of the natural module.

Lemma 12.2.1 K3 is elementary abelian and as a module for G3
∼= L3(2)

it is the even half of the GF (2)-permutational module for G3 on the set P
of points in resG(x3).

Proof. For a point p incident to x3 (a quint containing x3) let zp be
the unique involution in L(p) = Z(G(p)) (compare (a)). If p = x1, then zp
is centralized by G13 ∼ 25.(2× Sym4), which shows that zp ∈ K3. On the
other hand, L3 is the dual natural module for G3 while zp is centralized by
a point stabilizer in G3, hence zp 6∈ L3. If the involutions zp taken for p ∈ P
generate the whole K3 then the result follows, since K3 ≤ G13 and Z(G1)
is in the centre of G13. Otherwise the involutions generate a G3-invariant
complement to L3 in K3 and K3 is the direct sum of the natural module of
G3 and the module dual to the natural one. We suggest the reader to rule
out this possibility by looking at the structure of G2 or otherwise. 2

Lemma 12.2.2 G1 splits over K1.
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Proof. Put R = O2(G13/K3), which is elementary abelian of order
22. Then R coincides with the image of K1 in G3. Since K1 is elementary
abelian, there is a subgroup R in G13 which maps isomorphically onto R
and K1 ≤ CG13(R). In terms of (12.2.1) R has four orbits on P (one of
length 1 and three of length 2), hence dimCK3(R) = 3 and since R is
self-centralized in G3

∼= L3(2), we conclude that

K1 = CG13(R).

Let X be a Sylow 3-subgroup in G13. Then

K3 = CK3(X)⊕ [X,K3],

where by (12.2.1) the centraliser and the commutator are 2- and 4-
dimensional, respectively. Since all the involutions in G3

∼= L3(2) are con-
jugate and K3R splits over K3, there is an involution σ in G13 which inverts
X. Since σ stabilizes every X-orbit on the point-set P of resG(x3), it cen-
tralizes CK3

(X). Furthermore, since CK3
(X) ∩ CK1

(X) is 1-dimensional,
there is 1-subspace W in CK3

(X) which is centralized by 〈X,σ〉 ∼= Sym3.
The commutator [X,K3] carries a 2-dimensional GF (4)-vector space struc-
ture and the set T of 22-subgroups in the commutator normalized by X
is of size 5. Only one of these subgroups is in K1 and σ induces on T a
transposition. Hence there is a subgroup T ∈ T which is not in K1 and
which is normalized by 〈X,σ〉. Thus

〈W,T,X, σ〉 ∼= 2× Sym4

is a complement to K1 in G13 and the result is by Gaschütz theorem (8.2.8).
2

Lemma 12.2.3 G3 splits over K3.

Proof. By (12.2.2) G13 is the semidirect product of K1 and a group
S ∼= 2 × Sym4. Furthermore, if Ω = {1, 2, 3, 4, 5, 6} is a set of size 6 then
K1 can be treated as the even half of the power space of Ω and S as the
stabilizer in Sym(Ω) ∼= Sym6 of a partition of Ω into three pairs, say

Ω = {1, 2} ∪ {3, 4} ∪ {5, 6}.

Without loss of generality we assume that K1K3 = K1O2(S), so that K3 =
CG13(O2(S)) and K1∩K3 is 3-dimensional generated by the subsets {1, 2},
{3, 4} and {5, 6}. Let P ∼= Sym3 be a complement to O2(S) in S (say
P = 〈τ, σ〉, where τ = (1, 3, 5)(2, 4, 6), σ = (3, 5)(4, 6)). Then the 2-
subspace T inK1 containing {1, 3}, {3, 5}, {1, 5} and the empty set generate
together with P a complement to K3 in G13. As usual now the result is by
Gaschütz (8.2.8). 2

Lemma 12.2.4 The amalgam {G2, G3} is determined uniquely up to iso-
morphism.
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Proof. By (12.2.1) and (12.2.3) G3 is the semidirect product of K3

and a group L ∼= L3(2). Furthermore, K3 is the even half of the GF (2)-
permutational module of G3 on the set P of points incident to x3. This
means that G23 is the semidirect product of K3 and the stabilizer S ∼= Sym4

of the line x2 in L. The subgroup K+
2 has index 2 in G23 and it is normal

in G2 with G2/K
+
2
∼= Sym3. So our strategy is to identify K+

2 in G23 and
to calculate its automorphism group.

We identify x2 with the 3-element subset of P formed by the points
incident to x2. Then the subgroup R := O2(G23) is the semidirect product

of K3 and O2(S), so that |R| = 28 and Ĝ23 := G23/R ∼= Sym3. If R0 =

Z(R), then R0 is elementary abelian of order 23 and as a module for Ĝ23

we have
R0 = R

(1)
0 ⊕R

(2)
0 ,

where R
(1)
0 is 1-dimensional generated by P \ x2 and R

(2)
0 is 2-dimensional

irreducible generated by the 2-subsets of x2. If it easy to see that there
is a unique subgroup R1 of index 2 in R which is normal in G23, namely,
the one generated by O2(S) and the subsets of P which intersect x2 evenly.

Furthermore, R
(1)
0 = [R1, R1], the quotient R1 := R1/R

(1)
0 is elementary

abelian and a Sylow 3-subgroup X of G23 acts fixed-point freely on that
quotient. This shows that as a module for Ĝ23 we have

R1 = R
(2)
0 ⊕R

(3)

1 .

If R
(3)
1 is the preimage of R

(3)

1 in R1 then R
(3)
1 is extraspecial of plus type

with centre R
(1)
0 . Since K2 = O2(G2) and G2/K2

∼= Sym3 × Sym3, we
observe that K2 = R1. Let Y be a Sylow 3-subgroup of K−2 . Then Y
permutes transitively the points incident to x2, normalizes R1, commutes
with X modulo R1 and Y is inverted by elements from R \ R1. In view
of the above described structure of R it is an elementary exercise to check
that {G2, G3} is indeed determined uniquely up to isomorphism. 2

Now applying the standard strategy (compare the proof of (12.8.16) we
prove uniqueness of A = {G1, G2, G3}. The universal completion of this
amalgam was proved to be isomorphic to 37 ·S6(2) independently in [Hei91]
and in an unpublished work of the authors.

Proposition 12.2.5 All the amalgams of S6(2)-shape are isomorphic to

A(37 · S6(2),G(37 · S6(2)))

and 37 · S6(2) is the universal completion of such an amalgam. 2

12.3 M24-shape

In this section G is a T -geometry of rank 3 with the diagram

2
◦

2
◦ ∼

2
◦,
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G is a flag-transitive automorphism group of G, such that G1 ∼ 26.3 ·Sym6,
where K1 = O2(G1) is the hexacode module for G1

∼= 3 · Sym6 and G3 ∼
2.23.23.L3(2). Our goal is to show that A = {G1, G2, G3} is isomorphic
either to the amalgam associated with the action of M24 on G(M24) or to
the amalgam associated with the action of He on G(He).

Immediately by (8.2.4) we obtain

Lemma 12.3.1 G1 splits over K1, in particular, G1 is determined uniquely
up to isomorphism.

By (9.4.2) the subgroup G12 is specified in G1 up to conjugation as
the full preimage of a parabolic subgroup Sym4 × 2 in G1 which stabilizes
a hyperplane in K1. Thus by (12.3.1) G12 is determined uniquely up to
isomorphism and hence it is isomorphic to the corresponding subgroup in
M24 or He. Calculating in either of these groups or otherwise we obtain the
following (we consider it easiest to calculate in M24 where G12 is contained
in the stabilizer of a trio).

Lemma 12.3.2 Let D0 = O2(G12), U = O2(D0) and let X be a Sylow
3-subgroup in G12. Then

(i) U is elementary abelian of order 26;

(ii) X acts fixed-point freely on U ;

(iii) G12 is the semidirect product of U and NG12
(X) ∼= D8 × Sym3. 2

Observe that G2 normalizes D0. Indeed, G2 normalizes the subgroup
K−2 which has index 2 in G12, hence

D0 = O2(G12) = O2(K−2 ).

Lemma 12.3.3 The subgroup D0 has trivial centraliser in G2. In partic-
ular, G2 is isomorphic to a subgroup of AutD0 containing InnD0.

Proof. Suppose R := CG2
(D0) 6= 1. Since CG12

(D0) = 1, we must then
have that R ∼= 3 and G2 = RG12. On the other hand, since K1 6= L1, we
have that G2 induces Sym3 × Sym3 on the residue of the link x2. Clearly,
R, being normal in G2, maps into one of the direct factors Sym3. This
means that either R ≤ G3, or R ≤ G1. The first option contradicts the
fact that R 6≤ G12. The second option also leads to a contradiction with
the structure of G3. 2

We identify D0 with the subgroup InnD0 of AutD0. By (12.3.2 (ii)) we
conclude that AutD0 is the semidirect product of U ∼= 26 and ΓL(3, 4) =
NGL(U)(X). The latter group contains a normal subgroup SL(3, 4) and the
corresponding factor-group is isomorphic to D6. Since G2 has a quotient
Sym3 × Sym3 and since G2 contains the scalar subgroup X, the image of
G2 in D6

∼= ΓL3(4)/SL3(4) is of order two. Hence G2 is a subgroup of
26 : ΣL(3, 4).
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Lemma 12.3.4 The group G2 is a semidirect product of U and Sym4 ×
Sym3. It is uniquely determined up to isomorphism.

Proof. By (12.3.2 (iii)) G12 is a semidirect product of U with
NG12(X) ∼= D8 × Sym3 (and X is the group of scalars in ΣL(3, 4)). If
G2/U 6∼= Sym4 × Sym3 then the Sylow 3-subgroup of G2/U is normal.
This, however contradicts the structure of G3 (just check the number of
2-dimensional factors in G23). Thus, G2/U ∼= Sym4 × Sym3, and clearly,
sinceX acts on U fixed-point freely, G2 is the semidirect product as claimed.

To prove the second sentence, consider an involution a ∈ NG2(X) in the
direct factor Sym3. Then a inverts X and hence it maps onto an outer in-
volution (field automorphism) in ΣL(3, 4). We have that the centraliser in
ΣL(3, 4) of the subgroup Sym3 generated by the image of 〈X, a〉 is isomor-
phic to L3(2). Since in G2 we already have a subgroup D8 from this L3(2),
there are exactly two ways to extend that D8 to a Sym4 (maximal parabol-
ics in L3(2)). We claim that only one of the resulting subgroups can be
our G2. Indeed, by our original assumption Z(G3) is of order 2, hence the
unique involution t in Z(G3) is central in the subgroup G23 which has index
3 in G2. Since CG2

(t) contains a Sylow 2-subgroup of G2, it is clear that
t ∈ U . Thus the subgroup Sym4 which extends G12 to G2 must centralize
a vector in U , which uniquely specifies it. 2

From (12.3.1) and (12.3.3) it is easy to deduce that the type of the
amalgam B = {G1, G2} is uniquely determined. The next lemma shows
that there are at most two possibilities for the isomorphism type of B.

Lemma 12.3.5 The order of OutG12 is at most 2.

Proof. Let τ be an automorphism of G12. Since D0
∼= 26 : 3 is

characteristic in G12 and X is a Sylow 3-subgroup of G12, τ normalizes D0

and without loss of generality we may assume that it normalizes X. Then
τ normalizes N := NG12

(X) ∼= Sym3 × D8 which is a complement to U
in G12. Let S,D ≤ N , such that S ∼= Sym3, D ∼= D8 and N = S × D.
Then the centraliser of S in AutD0

∼= 26 : ΣL3(4) is isomorphic to L3(2)
in which D is self-normalized. Notice that S is generated by X and an
involution a which is in the centre of a Sylow 2-subgroup of N and inverts
x, while D = CN (S). This immediately shows that there are at most two
direct product decomposition of N and the result follows. 2

Proposition 12.3.6 An amalgam of M24-shape is isomorphic to either
A(M24,G(M24)) or A(He,G(He)) and its universal completion is isomor-
phic to M24 or He, respectively.

Proof. Since G(M24) and G(He) are simply connected [Hei91], M24

and He are the universal completions of A(1) and A(2), respectively. In
particular, the latter two amalgams are not isomorphic and it only remains
to show that there are at most two possibilities for the isomorphism type
of A. By (12.3.5) and the remark before that lemma, there are at most two
possibilities for the isomorphism type of B. We claim that the isomorphism
type of B uniquely determines that of A. Indeed by the proof of (12.3.4)



12.4. TRUNCATED M24-SHAPE 215

Z3 = Z(G3) is determined in G12 up to conjugation. Hence Gi3 = CGi
(Z3)

for i = 1 and 2. Thus the hypothesis of (8.5.2) hold and the claim follows.
2

12.4 Truncated M24-shape

In this section G is a T -geometry of rank 4 with the diagram

2
◦

2
◦

2
◦ ∼

2
◦,

G is a flag-transitive automorphism group of G such that G1 is isomorphic
to M24 or He and G4 ∼ 24.L4(2). By (10.3.5 (i)) G4 splits over K4 (which
is the natural module for G4

∼= L4(2).) In the present section we prove that
the imposed conditions specify the amalgam Af = {Gi | 1 ≤ i ≤ 4} up to
isomorphism (the index f stays for “fake”) and in the next section we show
that Af has no faithful completions which implies the non-existence of the
geometry with the stated properties.

We apply the dual strategy and start with the following

Lemma 12.4.1 The parabolic G3 is the semidirect product of G3
∼= L3(2)×

Sym3 and K3 which is the tensor product of the natural (2-dimensional)
module of K−3 /K3

∼= Sym3 and the dual of the natural module of K+
3 /K3

∼=
L3(2), so that G3

∼= 26 : (L3(2)× Sym3).

Proof. Clearly G34 ∼ 24 : 23 : L3(2) is the preimage in G4 of the
stabilizer 23 : L3(2) of the plane x3 in the residual projective space resG(x4).
Then K+

3 is the kernel of the action of G34 on the vertex-set of the link x3.
Moreover K+

3 is the only index 2 subgroup in G34, in particular, K3 is of
order 26. Since G4 acts faithfully on the set of vertices adjacent to x4 in the
derived graph, we conclude that L3 = 1. Hence by (9.4.1) K3 possesses the
tensor product structure as stated in the lemma. Since a Sylow 3-subgroup
of O2,3(G3) acts fixed-point freely on K3, it is easy to see that G3 splits
over K3. 2

Lemma 12.4.2 Let X = {G4, G3}. Then

(i) OutG34 has order two;

(ii) X is isomorphic to one of two particular amalgams X (1) and X (2).

Proof. Consider K+
3
∼= 23+3 : L3(2), which is the commutator sub-

group of G34. A complement F ∼= L3(2) to K3 = O2(K+
3 ) in K+

3 acts on
K3 as on the direct sum of two copies of the dual natural module. By the
Three Subgroup Lemma, for an automorphism τ of G34 which centralizes
K+

3 we have

[G34, τ ] ≤ CG34
(K+

3 ) = 1,
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and hence whenever an automorphism of G34 acts trivially on K+
3 , it is

trivial. So AutG34 is a subgroup of AutK+
3 , more precisely

AutG34 = NAutK+
3

(InnG34).

By (8.2.5 (ii)) H1(L3(2), 23) is 1-dimensional, hence K+
3 contains exactly

four classes of complements to K3. Since K3 is abelian, K+
3 can be pre-

sented as a semidirect product of K3 and any such complement F with
respect to the same action. Hence OutK+

3 acts transitively on the set of
classes of complements. To calculate the order of OutK+

3 , suppose that
τ ∈ AutK+

3 stabilizes the class of complements containing F . Then (ad-
justing τ by an inner automorphism) we may assume that τ normalizes F .
Since K3 involves only the dual natural module of F , τ induces an inner
automorphism of F and again adjusting τ by an inner automorphism (in-
duced by conjugation by an element of F ), we can assume that τ centralizes
F . In this case

τ ∈ CGL(K3)(F ) ∼= L2(2),

which shows that OutK+
3 has order at most 24. We claim that OutK+

3

acts faithfully on the classes of complements. Suppose τ ∈ AutK+
3 leaves

invariant every class of complements. For each pair C1 and C2 of such classes,
there is a unique 3-dimensional submodule U in K3, such that C1 and C2
merge modulo U . Since τ stabilizes each of the four classes of complements,
τ normalizes all the three submodules U . Now if we adjust τ by an inner
automorphism, we can assume that it centralizes a particular complement
F . Then τ centralizes each U and hence τ is the identity.

Thus, OutK+
3
∼= Sym4 and the image of G34 in OutK+

3 is a subgroup
T of order two. We claim that T is generated by a transposition. Indeed,
since G34 contains a subgroup 2 × L3(2), some involution from G34 \K+

3

commutes with a complement L3(2) from K+
3 . Therefore the involution

generating T fixes one of the four points. Since |NOutK+
3

(T ) : T | = 2, (i)

follows.
Since G34 is the normaliser in G4 of a hyperplane from K4 = O2(G4)

and G34 is a unique up to conjugation subgroup of index 3 in G3, the
type of X is uniquely specified. Since H1(G4,K4) is trivial by (8.2.5) and
H1(G3,K3) is trivial because of the fixed-point free action of a subgroup of
order 3, both OutG3 and OutG4 are trivial. Since G34 is self-normalized
in G3 and G4, (ii) follows from (i) and Goldschmidt’s lemma (8.3.2). 2

Let G(1) ∼= M24, G
(1)
4 be the stabilizer in G(1) of an octad B and G

(1)
3

be the stabilizer of a trio containing B. Let G(2) ∼= L5(2), G
(2)
4 be the

stabilizer in G(2) of a 1-subspace U from the natural module and G
(2)
3 be

the stabilizer of a 2-subspace containing U .

Lemma 12.4.3 In the above terms (up to a reordering) we have X (i) =

{G(i)
4 , G

(i)
3 } for i = 1 and 2.

Proof. The fact that {G(i)
4 , G

(i)
3 } possesses the imposed conditions

is an elementary exercise in the case i = 2 and it follows from the basic
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properties of the action of M24 on the Steiner system S(5, 8, 24) in the case
i = 1. Hence it only remains to show that X (1) and X (2) are not isomorphic.

For a faithful completion H of an amalgam X (i) = {G(i)
4 , G

(i)
3 }, where

i = 1 or 2 define a graph ∆(X (i), H), whose vertices are the cosets of G
(i)
4

in H and two such cosets are adjacent if their intersection is a coset of

G
(i)
3 ∩G

(i)
4 . If X (i) is a subamalgam in the amalgam of maximal parabolics

associated with a flag-transitive action of a T -geometry G, then ∆(X (i), G)
is the derived graph of G. Furthermore ∆(X (1), G(1)) is the octad graph
and ∆(X (2), G(2)) is the complete graph on 31 vertices.

Let G̃(i) be the universal completion of X (i). Then ∆̃(i) = ∆(X (i), G̃(i))
is of valency 30, every vertex is in 15 triangles and the vertices-triangles
incidence graph is a tree. For a vertex v ∈ ∆(i) there is a projective space
structure Π on the set of triangles containing v. For every line l of Π there
is a geometrical subgraph Σ̃(i) of valency 6.

Let G̃
(i)
2 be the stabilizer of Σ̃(i) in G̃(i), K

(i)
2 be the kernel of the action

of G̃
(i)
2 on Σ̃(i) and Ĝ

(i)
2 be the image of G̃

(i)
2 in OutK

(i)
2 , so that

Ĝ
(i)
2
∼= G̃

(i)
2 /(K

(i)
2 C

G̃
(i)
2

(K
(i)
2 ).

Then the structure of K
(i)
2 and Ĝ

(i)
2 are determined solely by that of the

amalgam X (i) but it is easier to calculate them in a finite completion of the
amalgam.

Let Σ(i) be the image of Σ̃(i) with respect to the covering

∆̃(i) → ∆(X (i), G(i)).

Then Σ(1) is the subgraph in the octad graph induced by the octads refined
by a sextet (isomorphic to the collinearity graph of G(S4(2))) while Σ(2) is
a complete subgraph on 7 vertices, induced by the 1-subspaces contained
in a 3-space. This shows that

K
(1)
2
∼= 26 : 3, Ĝ

(1)
2
∼= Sym6,

K
(2)
2
∼= 26, Ĝ

(2)
2
∼= L3(2)× Sym3.

In particular, X (1) and X (2) are not isomorphic. 2

Let us turn back to the amalgam Af = {Gi | 1 ≤ i ≤ 4} of maximal
parabolics associated with the action on a rank 4 T -geometry as in the
beginning of the section.

Lemma 12.4.4 The amalgam X = {G4, G3} is isomorphic to X (1).

Proof. Arguing as in the proof of (12.4.3) we produce a covering

χ : ∆̃(i) → ∆(G)

of the graph ∆̃(i) associated with the universal completion of X (i) onto the
derived graph ∆(G) of G. If X ∼= X (2) then one can easily deduce from the
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proof of (12.4.3) that G+
2 possesses L3(2)× Sym3 as a factor group, which

is impossible. 2

Notice that since Gi = 〈Gi3, Gi4〉 for i = 1, 2, the above lemma implies
that the universal completion of A possesses a homomorphism onto M24.

Lemma 12.4.5 The amalgam {G4, G3, G2} is uniquely determined up to
isomorphism.

Proof. Let G̃2 be the universal completion of the amalgam {G23, G24}.
Then K2 (which is the largest subgroup normal in both G23 and G24) is of
the form 26 : 3. One can check in M24 (which is a completion of {G4, G3})
that a 3-element from K2 acts fixed-point freely on O2(K2), which means
that Z(K2) = 1. In order to prove the lemma we have to show that the

kernel of the homomorphism ϕ : G̃2 → G2 is uniquely determined. The
kernel is contained in C

G̃2
(K2) while by the proof of (12.4.3)

G̃2/(CG̃2
(K2)K2) ∼= Sym6.

Since G2/K2
∼= 3 · Sym6, the kernel is an index 3 subgroup in C

G̃2
(K2).

Suppose there are two such subgroups and let T be their intersection. Then
G2 = G̃2/TK2

∼= 32.Sym6. Since the 3-part of the Schur multiplier of Alt6
is of order 3, G2 has a factor-group isomorphic to Alt3 or Sym3. On the
other hand, G2 is a completion of the amalgam {G23/K2, G24/K2}. It is
an easy exercise to check that this is impossible (compare (8.5.3 (i)). 2

Now we are in a position to establish the main result of the section.

Proposition 12.4.6 All the amalgams Af of truncated M24-shape are iso-
morphic and

G1
∼= M24, G2

∼= 26 : (3 ·Alt6 × 3).2,

G3
∼= 26 : (L3(2)× Sym3), G4

∼= 24 : L4(2).

Proof. Since resG(x1) is simply connected the uniqueness of Af follows
directly from (12.4.5). We know that G1 is either M24 or He and by
the paragraph before (12.4.5) the universal completion of Af possesses a
homomorphism onto M24. Since He is not a subgroup in M24 by the order
reason, G1

∼= M24. 2

12.5 The completion of Af
If this section we show that the amalgam Af as in (12.4.6) does not possess
a faithful completion. More precisely we prove the following.

Proposition 12.5.1 Let Af be the unique amalgam of truncated M24-
shape as in (12.4.6) and (U(Af ), ϕ) be the universal completion of Af .
Then

(i) U(Af ) ∼= M24;
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(ii) the restriction of ϕ to G2 has kernel of order 3;

(iii) ϕ(G1) = U(Af ).

We are going to show that starting with a tilde geometry G of rank at
least 4 which possesses a flag-transitive automorphism groupG and in which
the residual rank 3 tilde geometries are isomorphic to G(M24), one can con-
struct a geometry H with a locally truncated diagram. This construction
generalizes the constructions of H(Co1) and H(M) from G(Co1) and G(M).
The group G acts flag-transitively also on the geometry H and we achieve
a contradiction in the case of the amalgam Af when reconstructing one of
the parabolics associated with the action on H.

Thus let G be a T -geometry of rank n such that either n = 3 and G =
G(M24) or n ≥ 4 and every rank 3 residual T -geometry in G is isomorphic
to G(M24). Let G be a flag-transitive automorphism group of G (recall that
M24 is the only flag-transitive automorphism group of G(M24)).

Let ∆ = ∆(G) be the derived graph of G where as usual for an element y
of G by Σ[y] we denote the subgraph in ∆ induced by the vertices (elements
of type n in G) incident to y. If y is of type n−2 then Σ[y] is the collinearity
graph Ω of res+

G (y) ∼= G(3 · S4(2)) which is an antipodal distance-transitive
graph with the intersection diagram

���� ���� ���� ��������1 6 24 12 2
6 1 4 1 2 4 1 6

1 3 1

{v} Ω1(v) Ω2(v) Ω3(v) Ω4(v)

There is an equivalence relation on Ω with classes of the form {v}∪Ω4(v)
(the antipodal classes). These classes are exactly the fibers of the morphism
from Ω onto the collinearity graph of G(S4(2)) which commutes with the
action of the automorphism group.

Define a graph Ψ on the vertex set of ∆ by the following rule: two
distinct vertices are adjacent in Ψ if they are contained in a subgraph Σ[y]
for an element y of type n − 2 and if they are antipodal in this subgraph.
By the same letter Ψ we denote a connected component of Ψ containing
xn. We start by the following

Lemma 12.5.2 If G = G(M24) then Ψ is a complete graph on 15 vertices.

Proof. Let ϕ be the morphism of ∆ onto the octad graph which com-
mutes with the action of M24. The vertices of ∆ are the central involutions
in M24 and ϕ sends such an involution τ onto the octad formed by the
elements of S(5, 8, 24) fixed by τ . Then Ψ is a fiber of ϕ (compare Sec-
tion 3.3 in [Iv99]) and the stabilizer of Ψ in M24 induces on Ψ the doubly
transitive action of the octad stabilizer A ∼= 24 : L4(2) on the cosets of
CA(τ) ∼= 21+3+3.L3(2) where τ is an involution from O2(A). 2

Lemma 12.5.3 Let H be the stabilizer of Ψ in G. Then

(i) H acts transitively on the vertex-set of Ψ;
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(ii) the valency of Ψ is 2 ·
[
n
2

]
2

and H(xn) = G(xn) acts transitively on
Ψ1(xn).

Proof. (i) follows from the flag-transitivity of G. Every element y of
type n− 2 incident to xn corresponds to a pair {z(1)(y), z(2)(y)} of vertices
adjacent to xn in Ψ (here {xn, z(1)(y), z(2)(y)} is the antipodal block of Σ[y]
containing xn). By (9.2.3) Gn acts primitively on the set of such elements
y and hence it is easy to deduce from (12.5.2) that z(i)(y) = z(j)(y′) if and
only if i = j and y = y′ which gives (ii). 2

For 1 ≤ i ≤ n − 2 with an element yi of type i in G incident to xn we
associate a subgraph Ψ[yi] which is the connected component containing
xn of the subgraph in Ψ induced by the intersection Ψ ∩ Σ[yi]. With an
element yn−1 of type n − 1 in G incident to xn (a link containing xn) we
associate the subgraph Ψ[yn−1] induced by the union of the subgraphs Ψ[z]
taken for all the elements z of type n− 2 (the quints) incident to yn−1.

Lemma 12.5.4 The following assertions hold:

(i) the valency of Ψ[yi] is 2 ·
[
n−i

2

]
2

for i 6= n− 1;

(ii) for 1 ≤ i ≤ j ≤ n − 2 we have Ψ[yi] ⊆ Ψ[yj ] if and only if yi and yj
are incident in G;

(iii) Ψ[yn−2] is a triangle in Ψ;

(iv) Ψ[yn−3] is a complete graph on 15 vertices;

(v) Ψ[yn−1] is a complete graph on (2n+1 + 1) vertices.

2

Proof. (i) follows from (12.5.3 (ii)) while (ii) and (iii) are by the
definition. Since res+

G (yn−3) ∼= G(M24), (iv) follows from (12.5.2). By (iii)
Ψ[yn−1] is the union of 2n − 1 triangles with xn being the intersection of
any two of them. Let z1 and z2 be elements of type n − 2 incident to
yn−1. Then, since res−G (yn−1) is a projective space, there is an element of
type n − 3 incident to each of yn−1, z1 and z2. Hence by (iv) the union
Ψ[z1]∪Ψ[z2] induces a complete subgraph (on 5 vertices) and (v) follows.2

Let D be a subgeometry of rank n in G whose elements of type n are
the vertices of Ψ and the elements of type i for 1 ≤ i ≤ n−1 are subgraphs
Ψ[yi] defined as above, where yi is of type i in G incident to a vertex of Ψ.
If zi and zj are elements of type i and j in D with i 6= n − 1 6= j, then
zi and zj are incident in D if and only if zi ⊂ zj or zj ⊂ zi. An element
Ψ[yn−1] of type n − 1 in D is incident to all the vertices it contains and
to all the elements Ψ[yj ] of type j for 1 ≤ j ≤ n − 2 defined with respect
to elements yj incident to yn−1 in G. It is easy to check that Ψ[yn−1] and
Ψ[yj ], 1 ≤ j ≤ n − 2 are incident in D if and only if Ψ[yn−1] ∩ Ψ[yj ] is of
size 2n−j+1 + 1.
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Proposition 12.5.5 The geometry D belongs to the diagram

d d d d
d
d

�
��
�

HH
HH

. . .
2 2 2 2

2

2

1 2 n− 3 n− 2

n− 1

n

Dn(2):

and the stabilizer H of D in G induces on D a flag-transitive action.

Proof. We proceed by induction on n. If n = 3 then the result fol-
lows from (12.5.2) in view of the Klein correspondence. Thus we may
assume that the residue in D of an element of type 1 belongs to the dia-
gram Dn−1(2). On the other hand, it is straightforward by the definition
that the residues of xn in G and D are isomorphic. Hence it only remains
to show that the {1, n}-edge on the digram is empty. But this is clear since
the incidence in the residue of an element of type n− 1 is via inclusion. 2

In view of the classification of the spherical buildings [Ti74], [Ti82] and
the description of their flag-transitive automorphism groups [Sei73], (12.5.5)
implies the following.

Lemma 12.5.6 In terms of (12.5.5) we have the following:

(i) the action H of H on D is isomorphic to Ω+
2n(2);

(ii) the image I of G(xn) in H is of the form 2n(n−1)/2 : Ln(2), where
O2(I) is the exterior square of the natural module of I/(O2(I)) ∼=
Ln(2). 2

Proof of Proposition (12.5.1) Since G4
∼= 24 : L4(2) does not possess 26 :

L4(2) as a factor-group (12.5.6) shows that Af has no faithful completions.
Since we already know that M24 is a completion of Af the result follows.2

12.6 Co1-shape

In this section G is a rank 4 T -geometry with the diagram

2
◦

2
◦

2
◦ ∼

2
◦,

G1 ∼ 211.M24 with K1 = O2(G1) being the irreducible Golay code module
C11 for G1 = G1/K1

∼= M24. Since H2(M24, C11) = 1, G1 splits over K1

and we can choose a complement N1
∼= M24 to K1 in G1 so that G1 is the

semidirect product of K1 and N1 with respect to the natural action. Since
H1(M24, C11) = 1 all such complements N1 are conjugate in G1. We follow
the direct strategy, so our first goal is to determine the isomorphism type
of the amalgam B = {G1, G2} (to be more precise we are going to show
that B is isomorphic to the similar amalgam associated with the action of
Co1 on the T -geometry G(Co1).)
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The subgroup G12 is the preimage in G1 of the stabilizer S ∼= 26 :
3 · Sym6 in G1 of a point of resG(x1) ∼= G(M24). Since G1 is a semidirect
product, G12 is the semidirect product of K1 and a subgroup S in N1 which
maps isomorphically onto S.

By Lemma 3.8.3 in [Iv99] K1, as a module for S, is uniserial with the
composition series

1 < K
(2)
1 < K

(1)
1 < K1,

where K
(2)
1 = CK1

(O2(S)) is the natural 4-dimensional symplectic module

for S/O2,3(S) ∼= S4(2), K
(1)
1 = [K1, O2(S)] has codimension 1 in K1 and

K
(1)
1 /K

(2)
1 is the hexacode module for S/O2(S) ∼= 3 · Sym6. Hence

G12 ∼ 24.26.2.26.3 · Sym6

We need to identify the subgroup K−2 which is the kernel of the action of G2

on the point-set of the line x2. Towards this end we classify the subgroups
of of index 2 in G12 (since K−2 is one of them).

Lemma 12.6.1 The group G12 contains exactly three subgroups Y (1), Y (2)

and Y (3) of index two. If X is a Sylow 3-subgroup of O2,3(G12) and N (i) =
NY (i)(X)/X then up to reordering the following holds

(i) Y (1) is the semidirect product of K1 and S′ ∼= 26 : 3 · Alt6 with
N (1) ∼= 25 : Alt6;

(ii) Y (2) is the semidirect product of K
(1)
1 and S with N (2) ∼= 24 : Sym6;

(iii) Y (3) is the “diagonal” subgroup with N (3) ∼= 24 · Sym6 (the non-split
extension).

Proof. A subgroup of index 2 in G12, certainly contains the commu-
tator subgroup G′12 of G12. It is easy to see that G′12 is the semidirect

product of K
(1)
1 and S′ ∼= 26 : 3 · Alt6. Thus G12/G

′
12
∼= 22 and there

are three subgroups of index 2 in G12. The result is clear in view of the
fact that CK1

(X) is an indecomposable extension of the natural symplectic

module K
(2)
1 for NS(X)/X ∼= S4(2) by a trivial 1-dimensional module. 2

Since K1 induces a non-trivial action on the point-set of x2, K−2 does
not contain the whole of K1, so K−2 6= Y (1), but at this stage we are still left
with two possibilities for K−2 . In order to choose between the possibilities
let us have a closer look at the possible structure of G2. As usual let L2 be
the kernel of the action of G2 on the set of elements y2 of type 2 such that
{x1, y2, x3, x4} is a flag. Let E be the set of subgroups K(u)∩K2 taken for
all the points incident to x2 (so that E consists of three subgroups).

Lemma 12.6.2

G2 ∼ 24+12.(3 · Sym6 × Sym3),

and furthermore
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(i) K1 ∩K2 = K
(1)
1 has index 2 in K1;

(ii) K2 = O2(G2) and K2/L2 is the tensor product of the hexacode module
for K−2 /K2

∼= 3·Sym6 and of the 2-dimensional module for K+
2 /K2

∼=
Sym3;

(iii) L2 = K
(2)
1 = ∩E∈EE and L2

∼= 24 is the natural symplectic module
for G2/G

∞
2
∼= S4(2);

(iv) if E is an elementary abelian subgroup of order 210 in K2 which is
normal in K−2 then E ∈ E.

Proof. Since K1 acts trivially on res+
G (x2) and induces on res−G (x2) an

action of order 2, (i) follows. Now (ii) follows from (9.4.1) and implies (iii).
Since the action of the group 3 ·Sym6 on the hexacode module is absolutely
irreducible by (8.2.9), (iii) implies (iv). 2

Before identifying K−2 , let us explain a minor difficulty we experience
at this stage. What we know for sure, is that K−2 contains G′12 ∼ 24+6+6.3 ·
Alt6. The action of 3 · Alt6 on the hexacode module H is not absolutely
irreducible (it preserves a GF (4)-vector space structure). By (12.6.2 (ii))

K̃2 = K2/L2 is the direct sum of two copies of the hexacode module. Hence
there are exactly five (the number of 1-subspaces in a 2-dimensional GF (4)-

space) G′12/K2-submodules in K̃2, isomorphic to the hexacode module.
Thus we can not reconstruct E as in (12.6.2 (iv)) just looking at the action

of G′12 on K̃2, since a priori the preimage in K2 of any of the five hexacode
submodules could be a subgroup from E . But in fact at most three of the
preimages are elementary abelian.

Lemma 12.6.3 Let E be an elementary abelian subgroup of order 210 in
K2 which is normal in G′12. Then E ∈ E.

Proof. Since the second cohomology group of every chief factor of G′12

inside K2 is trivial, G′12 splits over K2. Let T ∼= 3 · Alt6 be a complement
so that X = O3(T ). If E = {E1, E2, E3} then, (treating Ei as a module for
T ) we have

Ei = L2 ⊕ V (i)
h ,

L2 = CEi(X) and V
(i)
h = [Ei, X] is the hexacode module for T .

Since G′12 is isomorphic to the corresponding subgroup associated with
the action of Co1 on G(Co1), we know that K2 must contain the subgroups

Ei as above. Notice that the centralizer in T of a non-zero vector from V
(i)
h

for i = 1 or 2 centralizes a unique non-zero vector in L2. Thus there is a
unique surjective mapping

λ : V
(1)
h → L2,

which commutes with the action of T . Notice that we can treat the non-zero
vectors in V

(1)
h and L2 as points of G(3 · S4(2)) and G(S4(2)), respectively.

Then λ is the morphism of the geometries, which commutes with the action
of the automorphism group.
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Since K2 = V
(1)
h V

(2)
h L2, it is easy to see that

V
(3)
h = {hϕ(h)l(h) | h ∈ V (1)

h },

where l(h) ∈ L2 and ϕ : V
(1)
h → V

(2)
h is an isomorphism. Let T (h) ∼= Sym4

be the stabilizer of h in T . Since V
(3)
h is the hexacode module for T ,

hϕ(h)l(h) must be centralized by T (h), which means that

(a) either l(h) is the identity for of all h ∈ V
(1)
h or l(h) = λ(h) for all

h ∈ V (1)
h ;

(b) ϕ(h) is contained in the 1-dimensional GF (4)-subspace in V
(2)
h cen-

tralized by T (h).

By reducing the product of hϕ(h)l(h) and h′ϕ(h′)l(h′) to the canonical
form hh′ϕ(hh′)l(hh′), we deduce the following equality:

(c) [h′, ϕ(h)] = l(h)l(h′)l(hh′).

Since the mapping (h1, h2) 7→ [h1, h2] for h1 ∈ V (1)
h , h2 ∈ V (2)

h is non-
trivial, in view of (a) we conclude that l(h) = λ(h) for all h ∈ H. This
shows that [h, ϕ(h)] = λ(h)2 = 1 which is consistent with the assumption

that V
(3)
h is an elementary abelian 2-group. We claim that the isomorphism

ϕ is uniquely determined. Indeed, let {h1 = h, h2, h3} be the line in V
(1)
h

centralized by T (h) and {k1 = ϕ(h), k2, k3} be the line in V
(2)
h centralized

by T (h) (we may assume the ki = ϕ(hi) for i = 2 and 3). Then

[h, k2] = [h, ϕ(h2)] = λ(h)λ(h2)λ(hh2) = λ(h)3 6= 1

and the result follows. 2

Lemma 12.6.4 K−2 = Y (2).

Proof. By (12.6.1) and the paragraph after the proof of (12.6.1) it
remains to show that K−2 6= Y (3). By (12.6.2 (iv)) and (12.6.3) K−2 is
the kernel of the action of G12 on the well defined collection E . Since
G12 = Y (2)Y (3) induces on E an action of order 2, K−2 is characterized
among Y (2) and Y (3) as the one which normalizes at least two elementary
abelian subgroups of order 210 in K2, normalized by G′12. Clearly both

K
(1)
1 and L2O2(S) are contained in E and each of them is normalized by

Y (2). Hence the result. 2

Lemma 12.6.5 OutK−2
∼= Sym3 × 2.

Proof. By (12.6.2 (iii)) OutK−2 acts on E and since K−2 is isomor-
phic to the corresponding subgroup associated with the action of Co1 on
G(Co1), we know that OutK−2 induces Sym3 on E . Let B be the sub-
group in AutK−2 which acts trivially on E (notice that B contains all
the inner automorphisms). We claim that B/InnK−2 has order 2. Let
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τ ∈ B. Since X is a Sylow 3-subgroup in O2,3(K−2 ) we can adjust τ
by an inner automorphism so that τ normalizes X. Then τ normalizes
N := NK−2

(X) ∼= (3 × 24) · Sym6. We know by (12.6.1 (ii)) that N splits

over O2(N). Since H1(N/O2,3(N), O2(N)) is 1-dimensional (cf. Table VI
in Section 8.2), there are two classes of complements to O2(N) in N . In
order to complete the proof it is sufficient to show that whenever τ nor-
malizes a complement T̂ ∼= 3 · Sym6 to O2(N) in N , τ is inner. Since
N/O2,3(N) ∼= Sym6 is self-normalized in OutO2(N) ∼= L4(2), τ induces

an inner automorphism of T̂ and hence we may assume that τ centralizes
T̂ . Recall that τ normalizes each Ei ∈ E and by the above the action of
τ commutes with the action of T̂ . As a module for T̂ the subgroup Ei
possesses the direct sum decomposition

Ei = L2 ⊕ V (i)
h

where L2 and V
(i)
h are non-isomorphic and absolutely irreducible by (8.2.9).

This means that τ centralizes Ei and hence must be the identity automor-
phism. Now it remains to mention that since O2(N) = L2 = Z(K2), an
automorphism of N which permutes the classes of complements to O2(N)
can be extended to an automorphism of K−2 . 2

Since the centre of K−2 is trivial, (12.6.5) implies that G2 is the preimage
of a Sym3-subgroup in OutK−2 . By (12.6.5) there are exactly two Sym3-
subgroups in OutK−2 and by the proof of (12.6.5) one of them, say D1 is
the kernel of the action on the classes of complements to K2. We know
that K1 is contained in G2 and that the image of K1 in OutK−2 has order
2. Furthermore, CK1

(X) is indecomposable and hence an element from K1

permutes the classes of complements to K2. Thus G2 is the preimage in
AutK−2 of the Sym3-subgroup in OutK−2 other than D1.

By the above paragraph the type of B = {G1, G2} is uniquely deter-
mined. Also it is easy to deduce from the proof of (12.6.5) that every
automorphism of G12 can be extended to an automorphism of G2. In view
of Goldschmitd’s lemma (8.3.2) we obtain the following.

Lemma 12.6.6 In the considered situation the amalgam B = {G1, G2} is
isomorphic to the analogous amalgam associated with the action of Co1 on
G(Co1). 2

Applying now (8.6.1) we obtain the main result of the section.

Proposition 12.6.7 All the amalgams of Co1-shape are isomorphic to
A(Co1,G(Co1)) and the universal completion of such an amalgam is iso-
morphic to Co1. 2

In terms of generators and relations the amalgam of maximal parabolics
associated with the action of Co1 on G(Co1) was characterized in [FS98].
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12.7 M-shape

In this section G is a T -geometry of rank 5 with the diagram

2
◦

2
◦

2
◦

2
◦ ∼

2
◦,

the residue of a point is isomorphic to G(Co1),

G1 ∼ 2.224.Co1,

where L1 is of order 2 and K1/L1 is the universal representation module of

G(Co1), isomorphic to the Leech lattice Λ
(24)

taken modulo 2. Arguing as
in the proof of (11.5.1) we obtain the following.

Lemma 12.7.1 K1 = O2(G1) is extraspecial of plus type and G1 ∼
21+24

+ .Co1. 2

Since A = {Gi | 1 ≤ i ≤ 5} is the amalgam of maximal parabolics
associated with an action on a T -geometry with res+

G (x2) ∼= G(M24), it
is immediate that the conditions in Definition 5.1.1 of [Iv99] are satisfied,
which means that C = {G1, G2, G3} is a Monster amalgam , in particular,

G2 ∼ 22+11+22.(Sym3 ×M24), G3 ∼ 23+6+12+18.(L3(2)× 3 · Sym6).

By Proposition 5.13.5 in [Iv99] all the Monster amalgams are isomorphic,
which means that C is isomorphic to the corresponding amalgam associated
with the action of M on G(M).

12.8 S2n(2)-shape, n ≥ 4

In this section G is a T -geometry of rank n ≥ 4 with the diagram

2
◦

2
◦ · · ·

2
◦

2
◦ ∼

2
◦,

in which the residue of a point is isomorphic to G(3[n−1
2 ]2 · S2n−2(2)), G is

a flag-transitive automorphism group of G, such that

G1 ∼ 2.22n−2.3[n−1
2 ]2 · S2n−2(2),

so that Z1 = Z(G1) is of order 2 and K1/Z1 is the natural symplectic
module for G1/O3(G1) ∼= S2n−2(2);

Gn ∼ 2
n(n−1)

2 .2n.Ln(2),

so that Ln is the exterior square of the natural module of Gn ∼= Ln(2)

and K̂n := Kn/Ln is the natural module for Gn. Our goal is to show
that the amalgam A = {Gi | 1 ≤ i ≤ n} is isomorphic to the amalgam
A0 = {G0

i | 1 ≤ i ≤ n} associated with the action of

G0 ∼= 3[n2 ]2 · S2n(2)
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on its T -geometry G(G0).
Let

µ : G0 → G = G0/O3(G0) ∼= S2n(2)

be the natural homomorphism and let Gi = µ(G0
i ) for 1 ≤ i ≤ n. Then

Gi ∼= G0
i /O3(G0

i ) and
A := {Gi | 1 ≤ i ≤ n}

is the amalgam of maximal parabolics associated with the action of G ∼=
S2n(2) on its symplectic polar space G(S2n(2)) (where Gi is the stabilizer
of the i-dimensional totally isotropic subspace from a fixed maximal flag).
From this and the well known properties of the parabolics in S2n(2) we
make the following observation.

Lemma 12.8.1 G0
1 splits over O2(G0

1) and G0
n splits over O2(G0

n).

In the next lemma we follow notation from (3.2.7). The proof is similar
to that of (12.2.1) and therefore is not given here.

Lemma 12.8.2 The subgroup Kn is an elementary abelian 2-group and
as a module for Gn ∼= Ln(2) it is isomorphic to the quotient P1

e /X (2) of
the even half of the GF (2)-permutational module of Ln(2) on the set of
1-subspaces in the natural module. 2

Let us consider Kn as a module for

Ĝ1n := G1n/Kn
∼= 2n−1 : Ln−1(2).

The following result can be checked directly using the structure of Kn

specified in (12.8.2).

Lemma 12.8.3 The following assertions hold:

(i) Ln, as a module for Ĝ1n, contains a unique submodule L
(1)
n , which

is isomorphic to the natural module of Ĝ1n/O2(Ĝ1n) ∼= Ln−1(2) and

Ln/L
(1)
n
∼=
∧2

L
(1)
n ;

(ii) K̂n, as a module for Ĝ1n, contains a unique submodule K̂
(1)
n which is

1-dimensional and K̂n/K̂
(1)
n is isomorphic to the dual of L

(1)
n . 2

Let us now allocate K1 inside O2(G1n). Recall that in terms of the ac-
tion of G on the derived graph the subgroup K1 is the vertex-wise stabilizer
of the subgraph Σ = Σ[x1].

Lemma 12.8.4 The following assertions hold:

(i) K1 ∩ Ln = L
(1)
n ;

(ii) K1Ln/Ln = K̂
(1)
n ;

(iii) K1Kn = O2(G1n).
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Proof. The elementwise stabilizer of Σ1(xn) in G1 induces on Σ2(xn)

an action of order 2
(n−1)(n−2)

2 , hence (12.8.3 (i)) gives (i). Since K1 ∩ Kn

fixes every vertex in Σ1(xn), it induces on ∆1(xn) an action of order 2
which gives (ii). Finally (iii) is by the order reason. 2

Lemma 12.8.5 The following assertions hold:

(i) K1 is elementary abelian;

(ii) K1, as a module for G1/O3(G1) ∼= S2n−2(2) ∼= Ω2n−1(2), is isomor-
phic to the natural orthogonal module.

Proof. Since G1 acts irreducibly on K1/Z1 (isomorphic to the natu-
ral symplectic module), K1 is either abelian or extraspecial and since G1

does not preserve non-zero quadratic forms on the quotient, K1 can not be
extraspecial and (i) follows. In view of (8.2.6), in order to prove (ii) it is
sufficient to show that K1 is indecomposable, which is easy to deduce from
(12.8.4) and the structure of Kn as in (12.8.3). 2

Let us turn to the structure of G2.

Lemma 12.8.6 The following assertions hold:

(i) [K1 : K1 ∩K2] = 2;

(ii) G2 induces Sym3 on the triple of points incident to x2;

(iii) G2 induces on res+
G (x2) ∼= G(3[n−2

2 ]2 ·S2n−4(2)) the full automorphism
of the residue;

(iv) G2
∼= Sym3 × (3[n−2

2 ]2 · S2n−4(2)).

Proof. Since K1 is contained in G2 and K1/Z1 is non-trivial, K1 in-
duces an action of order 2 on res−G (x2) (clearly K1 fixes res+

G (x2) ⊆ resG(x1)
elementwise). This gives (i) and (ii). The rest follows from the basic prop-
erties of the T -geometries of symplectic type (cf. Chapter 6 in [Iv99]).
2

Lemma 12.8.7 Put K̂−2 = K−2 /K2
∼= 3[n−2

2 ]2 · S2n−4(2). Then

(i) |L2| = 2;

(ii) K2/L2 is elementary abelian isomorphic to the tensor product of the

natural (2n − 3)-dimensional orthogonal module of K̂−2 /O3(K̂−2 ) ∼=
Ω2n−3(2) and the 2-dimensional module of G2/K

+
2
∼= Sym3;

(iii) if X is a Sylow 3-subgroup of K+
2 then CG2

(X) ∼= X × D where

L2 ≤ D and D/L2
∼= K̂−2 .

Proof. (ii) follows from (9.4.1) and implies (i) by the order reason.
Finally (iii) is by (12.8.6 (iv)). 2
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Lemma 12.8.8 In terms of (12.8.7) D splits over L2 i.e., D ∼= L2 ×D0,

where D0
∼= K̂−2 .

Proof. It is known (cf. [CCNPW]) that the Schur multiplier of
S2n−4(2) is trivial unless 2n− 4 ≤ 6, thus we only have to handle the cases
n = 4 and n = 5. Suppose first that n = 5 and that D/O3(D) ∼= 2 · S6(2)
(the only non-split extension). It is known that the preimage in 2 ·S6(2) of
a transvection of S6(2) has order 4, in particular, O2(D∩Gn) is not elemen-
tary abelian, contradiction to (12.8.2), since O2(D ∩Gn) ≤ Kn. Similarly,
if n = 4, then, independently on whether D involves a non-split double
cover of Alt6 or it is a semidirect product of 3 ·Alt6 with a cyclic group of
order 4, O2(D ∩Gn) contains an element of order 4, which is not possible.
2

Lemma 12.8.9 G1 splits over K1.

Proof. Let D0
∼= 3[n−2

2 ]2 · S2n−4(2) be the direct factor as in (12.8.8).
It follows from (12.8.6 (i)) that as a D0-module, K1 ∩K2 is an extension
of two 1-dimensional modules by the natural symplectic module of the
S2n−4(2)-factor of D0. By (8.2.6) this implies that K1 ∩K2 is a direct sum
of a 1-dimensional module and a module Y of dimension 2n − 3. Since
(K1 ∩ K2)/L2 is indecomposable, we have K1 ∩ K2 = Y L0 and hence
K2 = (K1 ∩K2)Y x where x is a generator of the Sylow 3-subgroup X of
K+

2 . Finally G12 = K1(Y xD0) splits over K1. Since G12 contains a Sylow
2-subgroup of G1 the result follows by (8.2.8). 2

Lemma 12.8.10 G1
∼= G0

1, in particular, G1 splits over K1.

Proof. In view of (12.8.9) it only remains to establish the module
structure of K1. By our original assumption K1 is an extension of the trivial
1-dimensional module by the natural symplectic module for S2n−2(2). It
follows from (12.8.7 (ii)) that [K1,K2] = L2, since [K1,K2] clearly contains
L2 and [x,K2] covers the image of K1∩K2 in K2/L2. In particular, [K1,K2]
has dimension 2n−2 which exclude the possibility that K1 is a direct sum.
Finally by (8.2.6) K1 must be the only indecomposable extension, namely
the natural orthogonal module of S2n−2(2) ∼= Ω2n−2(2). 2

Lemma 12.8.11 [gnsplits] Gn ∼= G0
n, is particular, Gn splits over Kn.

Proof. By Gaschütz theorem (8.2.8) Gn splits over Kn if and only if
G1n splits over Kn. Let ψ : G0

1 → G1 be the isomorphism, whose existence
is guaranteed by (12.8.10) and S0

12 be a complement to O2(Gn) in G0
1n ≤ Gn

(by (12.8.1) such a complement exists). Then ψ(S0
12) is a complement in

G12 = ψ(G0
12) to Kn = ψ(O2(G0

12)) and the result follows. Notice that
G0

12 is uniquely determined in G0
1 up to conjugation as the preimage of

the stabilizer in G0
1/O2,3(G0

1) ∼= S2n−2(2) of a maximal totally isotropic
subspace in the natural symplectic module. 2

We follow the dual strategy and our nearest goal is to reconstruct up
to isomorphism the amalgam X = {Gn, Gn−1}. By (12.8.2) and (12.8.11)
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the structure of Gn is known precisely. Then Gn−1,n is the full preimage
of the stabilizer in Gn of the hyperplane xn−1 in the natural module of
Gn ∼= Ln(2). We denote xn−1 also by W and call it the natural module for
Gn−1,n/O2(Gn−1,n) ∼= Ln−1(2).

Lemma 12.8.12 The following assertions hold:

(i) K+
n−1 coincides with O2(Gn−1,n) and it is the unique subgroup of

index 2 in Gn−1,n;

(ii) there is an elementary abelian subgroup T0 in Ln, which is in the
centre of O2(Gn−1,n) and as a module for Gn−1,n/O2(Gn−1,n) it is
isomorphic to W ;

(iv) Gn−1,n contains within K+
n−1/T0 exactly three composition factors,

each isomorphic to
∧2

W .

Proof. Everything follow directly from the structure of Gn and the
definition of Gn−1,n, In order to see (iii) we are using (9.2.4).

By (12.8.12) K+
n−1 has trivial centralizer in Gn−1 and therefore Gn−1

can be identified with a suitable subgroup in AutK+
n−1 such that

(P1) Gn−1,n is a subgroup of index 2 in Gn−1;

(P2) Gn−1/K
+
n−1
∼= Sym3.

Thus X is contained in the amalgam {Gn,AutK+
n−1}, which is deter-

mined uniquely up to isomorphism.

Lemma 12.8.13 Let T = O2(K+
n−1). Then Z(T ) involves exactly two

chief factors of K+
n−1, namely T0

∼=
∧2

W and Z(T )/T0
∼= W . As a module

for K+
n−1/T

∼= Ln−1(2) the module Z(T ) is indecomposable.

Proof. Clearly Z(T ) contains the centre Z of the Borel subgroup B.
It is easy to deduce from (12.8.2) that Z is of order 4. Thus Z(T ) involves
at least two chief factors. One of them is T0 as in (12.8.12 (iii)). On the
other hand, T covers the subgroup O2(Gn−1,n)/Kn of Gn/Kn which acts
non-trivially on Ln. Hence Z(T ) ≤ Kn and Z(T ) ∩ Ln = T0. Thus Z(T )
contains another chief factor, which is isomorphic to W .

It only remains to show that Z(T ) is indecomposable. Suppose to the
contrary that

Z(T ) = T0 ⊕ T1 and T1
∼= W.

For a point p of G incident to xn−1 let z(p) be the unique non-zero element
in the centre of G(p). Since G(p) ∩ Gn−1,n contains a Sylow 2-subgroup
of Gn−1,n, we conclude that z(p) ∈ Z(T ). Since G(p) ∩ Gn−1,n does not

stabilize non-zero vectors in T0
∼=
∧2

W , we must have z(p) ∈ T1. Suppose
now that l is a line incident to xn−1 and {p1, p2, p3} is the point set of l.
Then, because of the isomorphism T1

∼= W , we must have

z(p1) + z(p2) + z(p3) = 0,
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which shows that Kn splits over Ln contrary to (12.8.2). 2

Let us now turn to the outer automorphism group of K+
n−1. By (12.8.11)

we have K+
n−1 = TS for a subgroup S ∼= Ln−1(2). Let us first consider the

subgroup K
+

n−1 = K+
n−1/Z(T ).

Lemma 12.8.14 OutK+
n−1
∼= Sym3 if n ≥ 5 and OutK+

n−1
∼= Sym4 if

n = 4.

Proof. The group K
+

n−1 is a semidirect product of T and S ∼= Ln−1(2).

Since by (12.8.11) K
+

n−1 is isomorphic to the corresponding subgroup in
G0
n−1, it possesses an outer automorphism group Sym3. As a consequence

we conclude that K
+

n+1 must be the direct sum of two copies of the S-

module isomorphic to W . Since by (8.2.5) H1(S,W ) is trivial if n ≥ 5 and
1-dimensional if n = 4, the result follows (compare the proof of (12.4.1)).2

It remains to determine the image in OutK+
n−1 of the subgroup

A := CAutK+
n−1

(K
+

n−1).

Lemma 12.8.15 The following assertions hold:

(i) if a ∈ A then a acts trivially on T ;

(ii) the image in OutK+
n−1 of the subgroup A is trivial if n ≥ 5 and it is

a normal subgroup of order 2 if n = 4 or 5.

Proof. As above, let S be a subgroup in K+
n−1, isomorphic to Ln−1(2).

Let a ∈ A. Notice first that if s ∈ S then sa = s · za for some za ∈ Z(T ).
This means that a preserves the action of S on T . On the one hand, this
implies that a acts trivially on Z(T ). On the other hand, the mapping

λ : t 7→ [t, a]

from T/Z(T ) to Z(T ) must be linear, commuting with the action of S. By
(12.8.13) Z(T ) contains no submodules isomorphic to W . Hence λ must be
trivial, which gives (i).

Now as usual the question is reduced to the number of complements
to Z(T ) in Z(T )S. By (12.8.13) we know that Z(T ) involves two factors

isomorphic to W and
∧2

W , respectively. Hence it remains to consider the

case n = 4 (when both H1(S,W ) and H1(S,
∧2

W ) are non-trivial) and

the case n = 5 (when H1(S,W ) is trivial, but H1(S,
∧2

W ) is non-trivial).
We do not present the relevant argument in full here (cf. Lemma (5.4) in
[ShSt94]). 2

Lemma 12.8.16 The amalgam X = {Gn, Gn−1} is determined uniquely
up to isomorphism.
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Proof. It was mentioned before (12.8.13) that X is a subamalgam in
the uniquely determined amalgam {Gn,AutK+

n−1}. Suppose that n ≥ 5.
Then by (12.8.14) and (12.8.15) we have

AutK+
n−1/K

+
n−1
∼= Sym3 or Sym3 × 2,

in particular, Gn−1 is uniquely specified in AutK+
n−1 by the conditions

(P1) and (P2) stated before (12.8.13).
For the case n = 4 some further arguments are required which we do

not reproduce here (cf. Lemmas (5.6) – (5.8) in [ShSt94]). 2

Lemma 12.8.17 The amalgam {Gn, Gn−1, Gn−2} is determined uniquely
up to isomorphism.

Proof. By (12.8.16) X is isomorphic to X 0 = {G0
n, G

0
n−1} and since

O3(Gn) = O3(Gn−1) = 1, also to X = {Gn, Gn−1}. Let G̃n−2 be the
universal completion of the amalgam {Gn ∩Gn−2, Gn−1 ∩Gn−2} (as usual
this amalgam is easily specified inside X ). Then in order to prove the
lemma it is sufficient to show that the kernel N of the homomorphism of
G̃n−2 onto Gn−2 is uniquely determined.

Let N be the kernel of the homomorphism of G̃n−2 onto Gn−2. Since
|O3(Gn−2)| = 3 and in view of the existence of the homomorphism µ, we
immediately conclude that N has index 3 in N . Suppose there are two
possible choices for N , say N1 and N2 and consider

Ĝn−2 = G̃n−2/〈K+
n−2, N1 ∩N2〉 ∼= 32.Sym6.

Since the 3-part of the Schur multiplier of Alt6 is of order 3, Ĝn−2 possesses

a factor group F̂ isomorphic to Sym3 or Alt3. On the other hand, Ĝn−2

(and hence F̂ as well) is a completion of the amalgam

J = {(Gn ∩Gn−2)/K+
n−2, (Gn−1 ∩Gn−2)/K+

n−2} ∼= {Sym4× 2, Sym4× 2}

(notice that J is a subamalgam in Sym6). Now it is easy to check that J
could not possibly have F̂ as a completion. 2

Since res+
G (xi) is simply connected for 1 ≤ i ≤ n − 3 by the induction

hypothesis, we obtain the following.

Proposition 12.8.18 An amalgam of S2n(2)-shape for n ≥ 4 is isomor-
phic to the amalgam A0 = A(G0,G(G0)) and its universal completion is
G0.

æ



Concluding Remarks

Thus the exposition of the classification for the flag-transitive Petersen and
tilde geometries is complete. The classification was announced in [ISh94b],
while an outline of the history of the project along with the names of many
people who contributed to it can be found in Section 1.12 in [Iv99].

Let us emphasize that we never assumed that the finiteness of the Borel
subgroup and that our classification proof relies on results of computer
calculations in the following instances:

(a) the non-existence of a faithful completion of the amalgam of Alt7-
shape (12.1.1);

(b) the simple connectedness of the rank 3 T -geometries G(M24), G(He)
and G(37 · S6(2)) established (computationally) independently in
[Hei91] and in an unpublished work of the present authors;

(c) the universal representation module of G(He) (4.6.1);

(d) the universal representation group of the involution geometry of Alt7
(6.2.1).

It would certainly be nice to achieve in due course a completely
computer-free classification, but at the moment it seems rather compli-
cated.

In our proof the construction, the simple connectedness proof and the
classification via the amalgam method come separately and independently.
One would like to see a uniform treatment, say of the Monster group M
(starting with 2-local structure and leading to the existence and uniqueness)
based solely on the T -geometry G(M), like it was done in [IMe99] for the
fourth Janko group J4 using its P -geometry G(J4). Although, there is
always a price to pay: one has to admit that some proofs in [IMe99] are
quite complicated.

Another possibility to improve and refine the classification is to drop
the flag-transitivity assumption. In Section 13.1 we report on the latest
progress in this direction.
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Chapter 13

Further developments

In this chapter we discuss two projects which lie beyond the classification
of the flag-transitive P - and T -geometries. In Section 13.1 we report on the
latest progress in the attempt to classify the P - and T -geometries when the
flag-transitive assumption is dropped. In Section 13.2 we discuss Trofimov’s
theorem for locally projective graphs. Recall (cf. Chapter 9 in [Iv99]) that
a 2-arc transitive action of G on Γ is locally projective if

Ln(q) �G(x)Γ(x) ≤ PΓLn(q),

where Ln(q) is considered as a doubly transitive permutation group on the
set of 1-subspaces in the associated n-dimensional GF (q)-space. Trofimov’s
theorem shows in particular (cf. Table IX below) that the exceptional cases
of locally projective actions with G2(x) 6= 1 are related to the actions of the
automorphism groups of Petersen geometries on the corresponding derived
graphs. We would like to classify all the amalgams A = {G(x), G{x, y}}
of vertex- and edge stabilisers coming from locally projective actions. We
believe that such a classification would demonstrate once again the very
special rôle of P -geometries and their automorphism groups. Notice that
the classification of the amalgams A as above is equivalent to the classifi-
cation of the locally projective actions on trees.

13.1 Group-free characterisations

One can notice that our classification of the flag-transitive P - and T -
geometry is essentially group-theoretical. So it is very far from being a
purely geometrical theory. From this point of view, it is desirable to develop
methods to study P -and T -geometries in a “group-free” way. Ideally, the
classification should be reproduced under purely geometrical assumptions.
However, this goal seems to be too ambitious at present. The principal
complications is that if the flag-transitivity assumption is dropped then
the number of examples increases astronomically. To illustrate this point,
let us consider the P -geometry G(34371 · BM). Factoring this geometry
over the orbits of any subgroup of O3(34371 ·BM), one always gets again a
P -geometry.

235



236 CHAPTER 13. FURTHER DEVELOPMENTS

One possible solution to the above problem would be to classify only the
2-simply connected geometries. However, at present it is unclear how that
condition of 2-simple connectedness can be utilized, and so new ideas are
needed. Of course, even though a complete classification is beyond reach,
we can try and characterize the particular examples of P - and T geometries
by some geometrical conditions.

The following result has been established in [HS00].

Proposition 13.1.1 Suppose that G is a rank three P -geometry such that

(i) any two lines intersect in at most one point and

(ii) any three pairwise collinear points belong to a plane

Then G is isomorphic either to G(M22) or to G(3 ·M22). 2

If one drops the conditions (i) and (ii) in (13.1.1) then there is at least
one further example: a 63-point geometry (discovered by D.V. Pasechnik
and the second author) that is a quotient of G(3 ·M22) over the set of orbits
of an element of order 11 from 3 ·M22 (which acts on G(3 ·M22) fixed-point
freely).

In [CS01] the rank 4 case has been considered.

Proposition 13.1.2 Suppose that G is a rank four P -geometry such that

(i) any two lines intersect in at most one point;

(ii) any three pairwise collinear points belong to a plane, and

(iii) the residue of every point in isomorphic to G(M22).

Then G is isomorphic to G(Co2). 2

In the above theorem the condition (iii) eliminates the geometry
G(323 ·Co2) and its numerous non-flag-transitive quotients and also the flag-
transitive geometry G(J4). The fourth (and last) example of flag-transitive
P -geometry of rank four, namely G(M23), is eliminated by the condition
(i).

On the final step of the proof of (13.1.2) the following result from [C94]
has played a crucial role. Let Π denote the orbital graph of valency 891 (on
2 300 vertices) of the action of Co2 on the cosets of U6(2).2.

Proposition 13.1.3 Let Σ be the collinearity graph of the dual polar space
D4(3) of U6(2). Let ∆ be the distance 1-or-2 graph of Σ (i.e., ∆ and Σ
have the same set of vertices and two vertices are adjacent in ∆ if and only
if they are at distance 1 or 2 in Σ) then Π is the unique graph which is
locally ∆. 2

The above proposition can be reformulated in geometrical terms as fol-
lows.
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Proposition 13.1.4 Let E be an extended dual polar space with the dia-
gram

1
◦ c

2
◦

4
◦

4
◦,

such that

(i) the residue of an element of type 1 is isomorphic to the dual polar
space D4(3) of U6(2);

(ii) two elements of type 1 are incident to at most one common element
of type 2;

(iii) three elements of type 1 are pairwise incident to common elements of
type 2 if and only if they are incident to a common element of type 4.

Then E is isomorphic to the geometry E(Co2) of the Conway group Co2.2

We pose the following.

Conjecture 13.1.5 Let G be a rank five P -geometry such that

(i) any two lines intersect in at most one point;

(ii) any three pairwise collinear points belong to a plane, and

(iii) the residue of every point in isomorphic to G(Co2).

Then G is isomorphic to G(BM).

Recall that the Baby Monster graph is a graph Ω on the set {3, 4}-
transpositions in the Baby Monster group BM (the centraliser of such a
transposition is 2·2E6(2) : 2), two vertices are adjacent if their product is
a central involution in BM (with centralizer of the form 21+22

+ .Co2). Lo-
cally Ω is the commuting graph of the central involutions (in other terms
root involutions) in the group 2E6(2). (This means that two involutions
are adjacent in the local graph if and only if they commute.) The suborbit
diagram of Ω is given in Proposition 5.10.22 in [Iv99]. A crucial role in the
simple connectedness proof for G(BM) was played by the fact that Ω is tri-
angulable (cf. Proposition 5.11.5 in [Iv99]). In [IPS01] we have established
the following group-free characterization of the Baby Monster graph. We
believe that this result can be used in a proof of Conjecture 13.1.5, similarly
to the way how (13.1.3) was used in the proof of (13.1.2).

Proposition 13.1.6 Let Γ be a graph which is locally the commuting graph
of the central involutions in 2E6(2). Then Γ is isomorphic to the Baby
Monster graph. 2

The maximal cliques in the Baby Monster graph Ω are of size 120.
Let E(BM) be the geometry whose elements are the maximal cliques in Ω
together with the non-empty intersections of two or more such cliques; the
incidence is via inclusion. Then E(BM) is of rank 5, its elements of type 1,
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2, 3, 4 and 5 are the complete subgraphs in Ω on 1, 2, 4, 8 and 120 vertices,
respectively and E(BM) belongs to the diagram.

c.F4(t) :
1
◦ c

2
◦

2
◦

t
◦

t
◦

for t = 4, so that E(BM) is a c-extension of the F4-building of the group
2E6(2). The geometry E(BM) was first mentioned in [B85]. In the geo-
metrical terms (13.1.6) can be reformulated as follows.

Proposition 13.1.7 Let E be a geometry with the diagram c.F4(4), such
that

(i) any two elements of type 1 are incident to at most two elements of
type 2;

(ii) three elements of type 1 are pairwise incident to common elements of
type 2 if and only if they are incident to a common element of type 5.

Then E is isomorphic to E(BM). 2

The geometry G(BM) contains subgeometries E(2E6(2)) and E(Fi22)
with diagrams c.F4(2) and c.F4(1). The stabilizers in BM of these sub-
geometries induce on them flag-transitive actions of 2E6(2) : 2 and Fi22 :
2, respectively. Three further c.F4(2)-geometries E(3·2E6(2)), E(E6(2)),
E(226 : F4(2)) and one F4(1)-geometry E(3 · Fi22) were constructed in
[IPS01].

In [IW00] it was proved every flag-transitive c.F4(1)-geometry is isomor-
phic to either E(Fi22) or E(3 · Fi22). The suborbit diagrams of the four
known c.F4(2)-geometries are calculated in [IP00]. The classification prob-
lem of the flag-transitive c.F4(2)-geometries is currently under investigation
by C. Wiedorn.

13.2 Locally projective graphs

In [Tr91a] V.I. Trofimov has announced that for locally projective action
of a group G on a graph Γ (which can always taken to be a tree), the
equality G6(x) = 1 holds. The proof is given in the sequence of papers
[Tr92], [Tr95a], [Tr95b], [Tr98], [Tr00], [Tr01], [TrXX] (the last one is still
in preparation). The proof can be divided into the consideration of five cases
(i) – (v); in addition the cases p = 3, p = 2, and q = 2 were considered
separately. The case (v) for q = 2 seems to be the most complicated one (the
papers [Tr00], [Tr01], [TrXX] deal solely with this situation). In some cases
stronger bounds on the order of G(x) were established in fact it was claimed
that G2(x) = 1 except for the cases given in Table IX (in this table Wn+1

denotes the direct product of two copies of Ln+1(2) extended by a pair of
commuting involutary automorphisms). In [Tr91b] some information on the
structure of G(x) in the case G2(x) = 1 is given (although this information
does not specify G(x) up to isomorphism in all the cases).
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Table IX

(H/H1)∞ V1 V2 V3 V4 V5 Examples

L2(2n) 22n 2n AutS4(2n)

L2(3n) 32n 32n 3n AutG2(3n)

L3(2n) 26n 26n 23n 23n 22n AutF4(2n)

L3(3) 33 33 AutFi22

Ln(2) 2n 2 Wn+1

L3(2) 23 2 AutM22

L4(2) 26 24 2 Co2

L4(2) 26 24 24 J4

L5(2) 210 210 25 25 BM

Thus Trofimov’s theorem and its proof brings us very close to the de-
scription of all possible vertex stabilizers in locally projective action. Nev-
ertheless (at least as long as the published results are concerned) a consid-
erable amount of work is still to be done to get the complete list.

In fact, a final step in the classification of the locally projective
action would be the classification of of all possible amalgams: A =
{G(x), G{x, y}}. Notice that the same G(x) might appear in different amal-
gams. An example (not the smallest one) of such a case comes from the
actions of Ω+

10(2).2 on the corresponding dual polar space graph and of J4

on the derived graph of the corresponding locally truncated P -geometry.
In both cases G(x) is the semidirect product Q : L where L ∼= L5(2) and Q
is the exterior square of the natural module of L.

Thus it is very important to classify amalgams A of vertex and edge
stabilizers coming from locally projective actions. This is of course equiva-
lent to the classification of the locally projective actions on the trees. Let
us mention some further motivation for this classification project.

In studying the locally projective actions, a very important role is played
by so-called geometrical subgraphs. In the case when the original graph Γ
is a tree, a proper geometrical subgraph Σ is also a tree (of a smaller
valency) and the setwise stabilizer G{Σ} induces on Σ a locally projective
action. Proceeding by induction, we can assume that the action of G{Σ}
on Σ is known, and in this case there is the possibility of simplifying the
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proof of Trofimov’s theorem (of course, Trofimov is also using geometrical
subgraphs, but only on the level of vertex stabilizers).

It is also useful to study the kernel KΣ of the action of G{Σ} on Σ.
This is a finite normal subgroup in G{Σ} and one can consider the natural
homomorphism ϕ of G{Σ} into the outer automorphism group of KΣ . If
OΣ is the image of ϕ then the pair (OΣ,KΣ) is uniquely determined by the
amalgam A and by the type (valency) of the geometrical subgraph Σ.

The pairs provide certain information of possibilities of flag-transitive
diagram geometries whose residues are projective spaces. We illustrate this
statement in the case (v) (the collinearity case).

Let G be a geometry with the diagram

1
◦ X

q
◦

q
◦ · · ·

q
◦

q
◦

Then (ignoring some degenerated case) the collinearity graph Γ of G is
locally projective with respect to the action of G and hence the amalgam
{G1, G2} where G1 is the stabilizer of a point and G2 is the stabilizer of
a line must be from the list. Furthermore we can deduce some restrictions
on the leftmost edge on the diagram (the residue H of a flag of cotype
{1, 2}). Indeed, the residue H is the geometry of vertices and edges of the
geometrical subgraph Σ of valency q + 1. Let Σ0 be the quotient of the
corresponding tree (which is the universal cover of H) over the orbits of
CG{Σ}(KΣ)KΣ. Then H is a covering of Σ0.

As a continuation of the above example, we observe that when G(x) ∼=
210 : L5(2) the rank 2 residue H is either a covering of K3,3 or a covering
of the Petersen graph. We consider this as yet another justification of the
importance of the classification of the flag-transitive Petersen geometries.
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